Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zirconium(IV) dilanthanum(III) pentasulfide

Adam D. Raw and James A. Ibers*
Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.northwestern.edu

Received 20 October 2011; accepted 27 October 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{Zr}-\mathrm{S})=0.001 \AA$; R factor $=0.017 ; w R$ factor $=0.056 ;$ data-to-parameter ratio $=20.2$.

Zirconium(IV) dilanthanum(III) pentasulfide, $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$, crystallizes with four formula units in the space group Pnma in the $\mathrm{U}_{3} \mathrm{~S}_{5}$ structure type. The asymmetric unit comprises one Zr , one La and four S atoms. The Zr and three S atoms are situated on mirror planes. The structure consists of LaS_{8} facesharing bicapped distorted trigonal prisms and ZrS_{7} edgesharing monocapped octahedra.

Related literature

The cell parameters of $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ were previously reported from X-ray powder diffraction measurements (Kokhno \& Serebrennikov, 1977). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue \& Jeitschko, 1974). Given that these lattice parameters, the space group, and the stoichiometry are similar to those of $\mathrm{U}_{3} \mathrm{~S}_{5}$, it was assumed that $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ and $\mathrm{U}_{3} \mathrm{~S}_{5}$ are isotypic (Donohue \& Jeitschko, 1974). For analogous structures, see: Du Pont de Nemours (1976) and Potel et al. (1972). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980); for electrical properties, see: Senova et al. (1984). For synthetic details, see: Jin et al. (2009). For ionic radii, see: Shannon (1976). For standardization of structural data, see: Gelato \& Parthé (1987).

Experimental

Crystal data
$\mathrm{ZrLa}_{2} \mathrm{~S}_{5} \quad M_{r}=529.34$

Orthorhombic, Pnma
$a=11.4784$ (4) \AA
$b=8.2010$ (3) \AA
$c=7.3799$ (3) \AA
$V=694.70(5) \AA^{3}$
Data collection
Bruker APEXII CCD
diffractometer
Absorption correction: numerical
[face indexed (SADABS; Bruker,
2009)]
$T_{\text {min }}=0.263, T_{\text {max }}=0.340$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017 \quad 44$ parameters
$w R\left(F^{2}\right)=0.056$
$S=2.51$
890 reflections
$Z=4$
Mo $K \alpha$ radiation
$\mu=14.93 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.12 \times 0.11 \times 0.09 \mathrm{~mm}$

8134 measured reflections 890 independent reflections 877 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.

The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Divison of Materials Science and Engineering grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the International Institute of Nanotechnology (IIN)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2549).

References

Alekseeva, T. P., Senova, R. N., Cherkasova, T. G. \& Kokhno, G. V. (1980). Khim. Khim. Tekhnol. Geol. Mater. Reg. Nauchno-Prakt. Konf. 3, 8-9.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Donohue, P. C. \& Jeitschko, W. (1974). Mater. Res. Bull. 9, 1333-1336.
Du Pont de Nemours, E. I., and Co. (1976). US Patent No. 3956461.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Jin, G. B., Choi, E. S. \& Ibers, J. A. (2009). Inorg. Chem. 48, 8227-8232.
Kokhno, G. V. \& Serebrennikov, V. V. (1977). Zh. Neorg. Khim. 22, 2111-2114.
Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.
Potel, M., Brochu, R., Padiou, J. \& Grandjean, D. (1972). C. R. Seances Acad. Sci. Ser. C, 275, 1419-1421.
Senova, R. N., Alekseeva, T. P., Cherkasova, T. G. \& Kokhno, G. V. (1984). Sintez i Reakts, pp. 89-92. Tomsk: Sposobnost Veshchestv.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Zirconium(IV) dilanthanum(III) pentasulfide

A. D. Raw and J. A. Ibers

Comment

Single crystals of $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ resulted from attempts to synthesize zirconium analogues of the uranium lanthanide oxysulfide compound $\mathrm{UYb}_{2} \mathrm{O}_{2} \mathrm{~S}_{3}$ (Jin et al., 2009).
$\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ adopts the $\mathrm{U}_{3} \mathrm{~S}_{5}$ structure type (Potel et al., 1972). The unit-cell dimensions have been previously reported from single-crystal X-ray diffraction data (Donohue \& Jeitschko, 1974) and from powder X-ray diffraction data (Kokhno \& Serebrennikov, 1977). Unit-cell dimensions for $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ from the two single-crystal determinations compare favorably: $a=11.4864$ (5), $b=8.2167$ (5), $c=7.3894$ (3) Å at room temperature (Donohue \& Jeitschko, 1974) versus $a=11.4784$ (4), $b=8.2010$ (3), $c=7.3799$ (3) \AA from the present study at 100 K . (See also Kokhno \& Serebrennikov, 1977). Isostructural compounds have been previously reported based on X-ray powder diffraction measurements for all trivalent lanthanides and yttrium excluding promethium, europium and ytterbium (Du Pont de Nemours, 1976).

The La-S interatomic distances (Table 1, Fig. 1) in the face-sharing bicapped distorted trigonal prisms LaS 8 (Fig. 2) range from 2.8861 (8) to 3.0698 (9) \AA. The $\mathrm{Zr} —$ S distances range from 2.5704 (8) to 2.7421 (11) \AA. These values are close to the distances of $3.00 \AA$ for $\mathrm{La}-\mathrm{S}$ and $2.62 \AA$ for $\mathrm{Zr}-\mathrm{S}$ calculated from the summed ionic radii (Shannon, 1976).

Physical property measurements of $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ have been reported by Alekseeva et al. (1980) and Senova et al. (1984).

Experimental

$\mathrm{ZrO}_{2}\left(99.99 \%\right.$, Aldrich) and $\mathrm{La}_{2} \mathrm{~S}_{3}\left(99.9 \%\right.$, Strem) were used as received. $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ was synthesized from the elements. $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ was crystallized in a two step reaction in carbon-coated fused-silica tubes that had been evacuated to $10{ }^{-4}$ Torr. In the first step, $0.02 \mathrm{~g}(0.16 \mathrm{mmol}) \mathrm{ZrO}_{2}$ and $0.3 \mathrm{~g}(0.08 \mathrm{mmol}) \mathrm{La}_{2} \mathrm{~S}_{3}$ were heated at 1273 K for 99 h and cooled to 298 K in 14 h . The resulting powder was combined with $0.02 \mathrm{~g}(0.06 \mathrm{mmol}) \mathrm{Sb}_{2} \mathrm{~S}_{3}$ and heated at 1273 K for 99 h then cooled to 873 K at a rate of $2 \mathrm{~K} / \mathrm{h}$ before cooling to 298 K over 10 h . The resulting $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ formed black prismatic crystals in low yield ($<5 \mathrm{wt} \%$). These were mechanically separated from the remaining powder.

Refinement

The atomic positions were standardized with use of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest peak of 2.2 (2) e $/ \AA^{3}$ is $0.50 \AA$ and the deepest hole of $-0.5(2) \mathrm{e} / \AA^{3}$ is $0.99 \AA$ from the Zr position.

supplementary materials

Figures

Fig. 1. The asymmetric unit of $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$. Displacement ellipsoids are displayed at the 95% probability level.

Fig. 2. The $\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$ structure. La atoms are blue, Zr atoms are black, S atoms are yellow

Zirconium(IV) dilanthanum(III) pentasulfide

Crystal data

$\mathrm{ZrLa}_{2} \mathrm{~S}_{5}$
$M_{r}=529.34$

Orthorhombic, Pnma
$a=11.4784$ (4) \AA
$b=8.2010$ (3) \AA
$c=7.3799(3) \AA$
$V=694.70(5) \AA^{3}$
$Z=4$
$F(000)=936$
$D_{\mathrm{x}}=5.061 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6255 reflections
$\theta=3.1-27.9^{\circ}$
$\mu=14.93 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, black
$0.12 \times 0.11 \times 0.09 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
φ and ω scans
Absorption correction: numerical
[face indexed (SADABS; Bruker, 2009)]
$T_{\text {min }}=0.263, T_{\text {max }}=0.340$
8134 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.017$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$\left[1.00000+0.00000 \exp \left(0.00(\sin \theta / \lambda)^{2}\right)\right] /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+\right.$
$\left.0.0000+0.0000 * P+(0.0158 P)^{2}+0.0000 \sin \theta / \lambda\right]$
where $P=1.00000 F_{\mathrm{o}}{ }^{2}+0.00000 F_{\mathrm{c}}{ }^{2}$
$w R\left(F^{2}\right)=0.056$
$S=2.51$
890 reflections
44 parameters
0 restraints

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0015 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
La1	$0.328759(18)$	$0.501789(17)$	$0.44160(3)$	$0.00537(12)$
Zr1	$0.01001(3)$	0.2500	$0.42914(5)$	$0.00286(13)$
S1	$0.29147(10)$	0.2500	$0.15995(15)$	$0.0061(2)$
S2	$0.07363(7)$	$0.53474(10)$	$0.32234(11)$	$0.00812(18)$
S3	$0.19311(10)$	0.2500	$0.64058(15)$	$0.0063(2)$
S4	$0.00443(9)$	0.2500	$0.05768(14)$	$0.0073(2)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
La1	$0.00643(17)$	$0.00439(17)$	$0.00529(17)$	$0.00023(5)$	$-0.00022(6)$	$-0.00036(5)$
Zr1	$0.0030(2)$	$0.0028(2)$	$0.0028(2)$	0.000	$-0.00063(13)$	0.000
S1	$0.0073(5)$	$0.0053(5)$	$0.0056(5)$	0.000	$-0.0013(4)$	0.000
S2	$0.0102(4)$	$0.0080(3)$	$0.0062(4)$	$0.0004(3)$	$0.0007(3)$	$-0.0005(3)$
S3	$0.0086(5)$	$0.0051(5)$	$0.0051(5)$	0.000	$0.0008(4)$	0.000
S4	$0.0066(6)$	$0.0062(5)$	$0.0090(6)$	0.000	$0.0007(4)$	0.000

Geometric parameters ($\AA,{ }^{\circ}$)

La1—S4 4^{i}	$2.8861(8)$	$\mathrm{Zr} 1 — \mathrm{~S}^{\mathrm{viii}}$	$2.7206(9)$
$\mathrm{La} 1 — \mathrm{~S} 4^{\mathrm{ii}}$	$2.9230(7)$	$\mathrm{Zr} 1 — \mathrm{~S}^{\mathrm{ix}}$	$2.7206(9)$
$\mathrm{La} 1 — \mathrm{Si}^{\mathrm{ii}}$	$2.9402(8)$	$\mathrm{Zr} 1 — \mathrm{~S} 4$	$2.7421(11)$
$\mathrm{La} 1 — \mathrm{~S} 1$	$2.9610(8)$	$\mathrm{S} 1 — \mathrm{Zr} 1^{\mathrm{i}}$	$2.5932(12)$
$\mathrm{La} 1 — \mathrm{~S} 3$	$2.9740(8)$	$\mathrm{S} 1 — \mathrm{La} 1^{\mathrm{x}}$	$2.9402(8)$
$\mathrm{La} 1 — \mathrm{~S} 3^{\mathrm{iii}}$	$3.0235(8)$	$\mathrm{S} 1 — \mathrm{La} 1^{\mathrm{iii}}$	$2.9402(8)$

La1-S2 ${ }^{\text {ii }}$	3.0398 (8)
La1-S2	3.0698 (9)
La1-La $1^{\text {iv }}$	4.0247 (4)
La 1 - $\mathrm{La} 1^{\text {v }}$	4.0712 (3)
La1-La $1^{\text {iii }}$	4.1092 (2)
La 1 -La $1^{\text {ii }}$	4.1092 (2)
$\mathrm{Zr} 1-\mathrm{S} 2^{\text {vi }}$	2.5704 (8)
Zr1—S2	2.5705 (8)
$\mathrm{Zr} 1-\mathrm{S1}{ }^{\text {vii }}$	2.5932 (12)
Zr1—S3	2.6176 (12)
S4 ${ }^{\text {i }}$-Lal-S $4^{\text {ii }}$	92.295 (9)
S4 ${ }^{\text {i }}$-Lal-S $1^{\text {ii }}$	145.31 (3)
S4i ${ }^{\text {ii }} \mathrm{La} 1-\mathrm{S} 1^{\text {ii }}$	70.41 (3)
S4 ${ }^{\text {i }}$-La1-S 1	66.63 (3)
S4 ${ }^{\text {ii }}$-Lal—S 1	141.82 (3)
S1 ${ }^{\text {ii }}$-La1—S1	143.100 (13)
S4 ${ }^{\text {i }}$-La1-S3	82.42 (2)
S4 ${ }^{\text {ii }}$-La1—S3	132.98 (3)
S1 ${ }^{\text {ii }}$-La1—S3	87.96 (2)
S1-La1-S3	77.69 (2)
S4i ${ }^{\text {i }}$ La $1-\mathrm{S} 3^{\text {iii }}$	122.76 (3)
S4iil La - S $3^{\text {iii }}$	78.51 (2)
S $1^{\text {iii }}$ La1— $\mathrm{S}^{\text {iii }}$	84.12 (2)
S1—La1—S3 ${ }^{\text {iii }}$	86.66 (2)
S3-La1-S3 ${ }^{\text {iii }}$	141.885 (17)
S4 ${ }^{\text {i }}$ Lal-S $2^{\text {ii }}$	70.75 (3)
S4i ${ }^{\text {ii }} \mathrm{La} 1-\mathrm{S} 2{ }^{\text {ii }}$	63.66 (2)
S1iin La 1 - $2^{\text {ii }}$	74.61 (3)
S1-La1-S2 ${ }^{\text {ii }}$	129.30 (2)
S3-La1-S2 ${ }^{\text {ii }}$	70.62 (3)
S3 ${ }^{\text {iii }}$-La1-S2 ${ }^{\text {ii }}$	140.91 (2)
S4 ${ }^{\text {i }}$-La1-S2	136.89 (2)
S4 ${ }^{\text {ii }}$-La1-S2	130.36 (2)
S1 ${ }^{\text {ii }}$-La1—S2	69.42 (3)
S1-La1-S2	73.87 (3)
S3-La1-S2	72.74 (3)
S3 ${ }^{\text {iii }}$-La1-S2	69.57 (3)
S2 ${ }^{\text {ii }}$-La1—S2	128.71 (2)
S $4^{\text {i }}$-La $1-\mathrm{La} 1^{\text {iv }}$	46.526 (16)
S4iin ${ }^{\text {ii }}$ Lal-La $1^{\text {iv }}$	45.769 (15)

S1-La1 ${ }^{\text {vi }}$	2.9609 (8)
$\mathrm{S} 2-\mathrm{Zr} 1^{\text {viii }}$	2.7206 (9)
S2-La $1^{\text {iii }}$	3.0398 (8)
S3-La1 ${ }^{\text {vi }}$	2.9739 (8)
S3-La $1^{\text {ii }}$	3.0235 (8)
S3-La ${ }^{\text {xi }}$	3.0235 (8)
S4-La $1^{\text {xii }}$	2.8861 (8)
S4-La1 ${ }^{\text {vii }}$	2.8861 (8)
S4-La $1^{\text {iii }}$	2.9230 (7)
S4-La ${ }^{\text {x }}$	2.9230 (7)
S2-La1-La ${ }^{\text {ii }}$	80.696 (17)
La $1^{\text {iv }}$-La $1-\mathrm{La} 1^{\text {ii }}$	103.733 (7)
La 1^{v}-La1-La $1^{\text {ii }}$	90.408 (4)
La $1^{\text {iii }}$ La1-La $1^{\text {ii }}$	127.785 (11)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Zr} 1-\mathrm{S} 2$	130.58 (4)
S2 ${ }^{\text {vi }}-\mathrm{Zr} 1-\mathrm{S} 1^{\text {vii }}$	101.36 (2)
S2-Zr1-S1 ${ }^{\text {vii }}$	101.36 (2)
S2 ${ }^{\text {vi }}-\mathrm{Zr} 1-\mathrm{S} 3$	87.40 (2)
S2-Zr1-S3	87.40 (2)
S1 ${ }^{\text {vii }} \mathrm{Zr} 1-\mathrm{S} 3$	158.10 (3)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {viii }}$	153.69 (2)
$\mathrm{S} 2-\mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {viii }}$	73.59 (3)
S1 ${ }^{\text {vii }} \mathrm{Z} \mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {viii }}$	80.19 (3)
$\mathrm{S} 3-\mathrm{Zr} 1-\mathrm{S} 2^{\text {viii }}$	83.19 (3)
$\mathrm{S} 2{ }^{\text {vi }}-\mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {ix }}$	73.59 (3)
$\mathrm{S} 2-\mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {ix }}$	153.69 (2)
S1 ${ }^{\text {vii }}-\mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {ix }}$	80.19 (3)
S3-Zr1—S2 ${ }^{\text {ix }}$	83.19 (3)
S2 ${ }^{\text {viii }} \mathrm{Z} \mathrm{Zr} 1-\mathrm{S} 2{ }^{\text {ix }}$	80.92 (4)
S2 ${ }^{\text {vi }} \mathrm{Zr} 1-\mathrm{S} 4$	72.55 (2)
$\mathrm{S} 2-\mathrm{Zr} 1-\mathrm{S} 4$	72.55 (2)
S1 ${ }^{\text {vii }}-\mathrm{Zr} 1-\mathrm{S} 4$	73.97 (3)
S3-Zr1-S4	127.93 (4)
S2 ${ }^{\text {viii }} \mathrm{Zr} 1-\mathrm{S} 4$	131.74 (2)
S2 ${ }^{\text {ix }}-\mathrm{Zr} 1-\mathrm{S} 4$	131.74 (2)
$\mathrm{Zr} 1^{\mathrm{i}}-\mathrm{S} 1-\mathrm{La} 1^{\mathrm{x}}$	108.37 (3)
$\mathrm{Zr1}{ }^{\text {i }}$ - $\mathrm{S} 1-\mathrm{La} 1^{\text {iii }}$	108.37 (3)
La 1^{x}-S 1 -La $1^{\text {iii }}$	87.63 (3)
$\mathrm{Zr1}{ }^{\mathrm{i}}$ - $\mathrm{S} 1-\mathrm{La1}{ }^{\text {vi }}$	92.19 (3)
La ${ }^{\text {x }}-\mathrm{S} 1-\mathrm{La} 1^{\text {vi }}$	88.267 (9)

S1 ${ }^{\text {ii }}$-La1-La $1^{\text {iv }}$	110.25 (2)	La $1^{\text {iii }}-\mathrm{S} 1-\mathrm{La} 1{ }^{\text {vi }}$	159.29 (4)
S1-La1-La $1^{\text {iv }}$	106.65 (2)	Zr1 ${ }^{\text {i }}$-S1—Lal	92.19 (3)
S3-La1-La $1^{\text {iv }}$	113.61 (2)	La ${ }^{\mathrm{x}}$-S 1 -La 1	159.29 (4)
S3iii-La ${ }^{\text {iii }}$ La $1^{\text {iv }}$	104.09 (2)	La $1^{\text {iii }}$-S1—La 1	88.267 (9)
S2 ${ }^{\text {iii }}$ La1-La $1^{\text {iv }}$	56.031 (16)	La1 ${ }^{\text {vi }}$-S1-La 1	88.43 (3)
S2-Lal-La ${ }^{\text {iv }}$	173.643 (17)	$\mathrm{Zr1}$-S2—Zr1 ${ }^{\text {viii }}$	106.41 (3)
S4 ${ }^{\text {i }}$-La1-La ${ }^{\text {v }}$	135.682 (15)	Zr1—S2-La $1^{\text {iii }}$	107.38 (3)
S4 ${ }^{\text {iii }}$ La $1-\mathrm{La} 1^{\text {v }}$	45.861 (14)	$\mathrm{Zr1}{ }^{\text {viii }} \mathrm{S} 2$-La $1^{\text {iii }}$	144.80 (3)
S1iinLal-La ${ }^{\text {v }}$	46.186 (15)	Zr1-S2-Lal	95.92 (3)
S 1 -La1-La1 ${ }^{\text {v }}$	134.217 (15)	Zr1 ${ }^{\text {viii }}$-S2—La1	101.56 (3)
S3-La1-La1 ${ }^{\text {v }}$	133.973 (16)	La $1^{\text {iii }}$-S2-La1	84.53 (2)
S3iii ${ }^{\text {iii }} \mathrm{La} 1-\mathrm{La} 1^{\text {V }}$	47.682 (15)	Zr1—S3-La1 ${ }^{\text {vi }}$	97.24 (3)
S2 ${ }^{\text {iii }} \mathrm{La} 1-\mathrm{La} 1^{\text {V }}$	95.655 (16)	Zr1-S3-Lal	97.24 (3)
S2-La ${ }^{\text {- }}$ La $1^{\text {v }}$	84.950 (15)	La1 ${ }^{\text {vi }}$-S3-La1	87.95 (3)
La $1^{\text {iv }}$-La $1-\mathrm{La} 1^{\text {v }}$	90.417 (4)	Zr1-S3-La ${ }^{\text {ii }}$	111.80 (3)
S4 ${ }^{\text {i }}$-La 1 La $1^{\text {iii }}$	107.70 (2)	La $1^{\text {vi }}$-S3-La $1^{\text {ii }}$	150.89 (4)
S4ii ${ }^{\text {ii }}$ Lal-La $1^{\text {iii }}$	123.806 (19)	La 1-S3-La ${ }^{\text {ii }}$	86.491 (11)
S1 ${ }^{\text {iii }}$ La1-La $1^{\text {iii }}$	106.89 (2)	Zr1-S3-La $1^{\text {xi }}$	111.80 (3)
S1-La1-La ${ }^{\text {iii }}$	45.659 (16)	La $1^{\text {vi }}-$ S3-La $1^{\text {xi }}$	86.491 (11)
S3-La1-La $1^{\text {iii }}$	102.01 (2)	La1-S3-La ${ }^{\text {xi }}$	150.89 (4)
S3 ${ }^{\text {iii }}$-La1-La $1^{\text {iii }}$	46.251 (17)	La $1^{\mathrm{ii}}-\mathrm{S} 3-\mathrm{La} 1^{\mathrm{xi}}$	84.64 (3)
S2 $2^{\text {ii }}$-La1-La $1^{\text {iii }}$	172.533 (17)	Zr1—S4-La ${ }^{\text {xii }}$	90.83 (3)
S2-La1-La ${ }^{\text {iii }}$	47.425 (16)	Zr1—S4-La ${ }^{\text {vii }}$	90.83 (3)
La $1^{\text {iv }}-\mathrm{La} 1-\mathrm{La} 1{ }^{\text {iii }}$	128.467 (9)	La ${ }^{\text {xii }}$-S4-La $1^{\text {vii }}$	91.36 (3)
La 1^{v}-La 1 -La $1^{\text {iii }}$	90.409 (4)	Zr1—S4-La1 ${ }^{\text {iii }}$	106.12 (3)
S $4{ }^{\text {i }}$-La $1-\mathrm{La} 1^{\text {ii }}$	107.50 (2)	La $1^{\text {xii }}$-S4-La $1^{\text {iii }}$	163.03 (4)
S4 ${ }^{\text {iii }}$-La1-La $1^{\text {ii }}$	91.72 (2)	La $1^{\text {vii }}$-S4-La $1^{\text {iii }}$	87.705 (9)
S1 ${ }^{\text {ii }}$-La1-La $1^{\text {ii }}$	46.074 (16)	Zr 1 -S4-La1 ${ }^{\text {x }}$	106.12 (3)
S1—La 1 La $1^{\text {ii }}$	124.18 (2)	La $1^{\text {xii }}-\mathrm{S} 4-\mathrm{La} 1^{\mathrm{x}}$	87.705 (9)
S3-La 1 La $1^{\text {ii }}$	47.258 (17)	La $1^{\text {vii }}$-S4-La 1^{x}	163.03 (4)
S3iii ${ }^{\text {iii }} \mathrm{La} 1-\mathrm{La} 1^{\text {ii }}$	128.91 (2)	La $1^{\text {iii }}-\mathrm{S} 4-\mathrm{La} 1^{\mathrm{x}}$	88.28 (3)
S2 ${ }^{\text {iii }}$ La1—La $1^{\text {ii }}$	48.044 (16)		
Symmetry codes: (i) $x+1 / 2, y,-z+1 / 2$; (ii) $-x+1 / 2,-y+1, z+1 / 2$; (iii) $-x+1 / 2,-y+1, z-1 / 2$; (iv) $-x+1,-y+1,-z+1$; (v) $x,-y+3 / 2, z$; (vi) $x,-y+1 / 2, z$; (vii) $x-1 / 2, y,-z+1 / 2$; (viii) $-x,-y+1,-z+1$; (ix) $-x, y-1 / 2,-z+1$; (x) $-x+1 / 2, y-1 / 2, z-1 / 2$; (xi) $-x+1 / 2, y-1 / 2, z+1 / 2$; (xii) $x-1 / 2,-y+1 / 2,-z+1 / 2$.			

supplementary materials

Fig. 1

Fig. 2
$\underset{\infty}{\infty}$

