Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jong-Young Kim, Danielle L. Gray and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{Zr}-\mathrm{Te})=0.005 \AA$
R factor $=0.025$
$w R$ factor $=0.067$
Data-to-parameter ratio $=28.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Caesium zirconium uranium pentatelluride, CsZrUTe 5

$\mathrm{CsZrUTe}_{5}$ is isostructural with $\mathrm{CsTiUTe}_{5}$. In the asymmetric unit, the site symmetries of the $\mathrm{Cs}, \mathrm{U}, \mathrm{Zr}, \mathrm{Te} 1, \mathrm{Te} 2$ and Te 3 atoms are $m m 2, m m 2, .2 / m ., m . .$, .2. and $m m 2$, respectively. CsZrUTe 5 has a layered structure that contains UTe_{8} bicapped trigonal prisms sharing a common edge with ZrTe_{6} octahedra. Cs cations separate the layers. The structure contains an infinite linear $\mathrm{Te}-\mathrm{Te}$ chain, with Te atoms separated by 3.1551 (4) \AA.

Comment

The structure of the compound $\mathrm{CsTiUTe}_{5}$ (Cody \& Ibers, 1995) features an infinite linear chain of short $\mathrm{Te}-\mathrm{Te}$ interactions, the $\mathrm{Te}-\mathrm{Te}$ distance being 3.065 (1) \AA. Despite the presence of this chain, the compound is a semiconductor. Crystals sufficiently large to allow more complete conductivity measurements could not be grown. Accordingly, we turned our attention to the synthesis of the possible Zr analogue, namely $\mathrm{CsZrUTe}_{5}$. The compound has been synthesized and its structure is reported here. Unfortunately, large crystals of this material have not been grown.

Figure 1
The structure of $\mathrm{CsZrUTe}_{5}$, viewed approximately along [010]. The $\mathrm{Te}-$ Te bonds in the infinite chain are drawn as red lines. Displacement ellipsoids are displayed at the 99% probability level.

Received 10 April 2006 Accepted 14 April 2006

Fig. 1 shows the crystal structure of $\mathrm{CsZrUTe}_{5}$, which is isostructural with $\mathrm{CsTiUTe}_{5}$ (Cody \& Ibers, 1995). The anionic layers comprise UTe_{8} bicapped trigonal prisms and ZrTe_{6} octahedra. These layers are separated by Cs cations which are coordinated in a bicapped pentagonal prism of Te atoms.

The $\mathrm{U}-\mathrm{Te}$ distances and U -atom coordination environment are similar to those found in UTe_{2} (Beck \& Dausch, 1988). In both structures, the UTe_{8} bicapped trigonal prisms have a short $\mathrm{Te}-\mathrm{Te}$ distance at one edge of the triangular face. In $\mathrm{CsZrUTe}_{5}$ the prisms share edges of a rectangular face through Te 2 atoms in the [100] direction. This results in an infinite linear chain of Te atoms; the $\mathrm{Te}-\mathrm{Te}$ distance is 3.1551 (4) \AA.

Each nearly regular ZrTe_{6} octahedron shares faces with two adjacent octahedra to create an unusual infinite $\left[\mathrm{ZrTe}_{3}{ }^{2-}\right]$ chain. The $\mathrm{Zr}-\mathrm{Te}$ distances (Table 1) are comparable with those of 2.8771 (7)-3.0426 (8) \AA in ZrTe (Örlygsson \& Harbrecht, 2001).

Experimental

$\mathrm{CsZrUTe}{ }_{5}$ was obtained as black needles from the reaction of $\mathrm{Cs}_{2} \mathrm{Te}_{3}$ (0.11 mmol), U (Oak Ridge National Laboratory, 0.23 mmol), Zr (Chemtall $\mathrm{GmbH}, 0.23 \mathrm{mmol}$) and Te (Aldrich, $99.8 \%, 0.80 \mathrm{mmol}$) with CsCl (Strem, 99.999%) as flux. The $\mathrm{Cs}_{2} \mathrm{Te}_{3}$ reactive flux was prepared by the stoichiometric reaction of Cs (Alfa Aesar, 99.8\%) and Te in liquid NH_{3} at 194 K . The reactants were loaded into a fused-silica tube under an Ar atmosphere in a dry box. The tube was evacuated to 10^{-4} Torr (1 Torr $=133.322 \mathrm{~Pa}$), sealed and placed in a computer-controlled furnace. The sample was heated to 1223 K , kept at 1223 K for 144 h and then slowly cooled at $2 \mathrm{~K} \mathrm{~h}^{-1}$ to 293 K . The resulting crystals were extracted manually from the melt.

Crystal data

CsZrUTe ${ }_{5}$
$M_{r}=1100.16$
Orthorhombic, Pmma
$a=6.3101$ (8) A
$b=8.2299$ (10) \AA
$c=10.5401$ (13) \AA
$V=547.36(12) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=6.675 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=31.99 \mathrm{~mm}^{-1} \\
& T=153(2) \mathrm{K} \\
& \text { Needle, black } \\
& 0.336 \times 0.062 \times 0.056 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD area-
\quad detector diffractometer
ω scans
Absorption correction: numerical
face-indexed $($ SHELXTL;
Sheldrick, 2003)
$T_{\min }=0.039, T_{\max }=0.217$

Bruker SMART 1000 CCD areaiffractometer

Absorption correction: numerical d (SHELXTL
$T_{\text {min }}=0.039, T_{\text {max }}=0.217$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.04 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$(\Delta / \sigma)_{\max }<0.001$ 。
$w R\left(F^{2}\right)=0.067$
$S=1.27$
$\Delta \rho_{\max }=3.85 \mathrm{e} \AA^{-3}$
801 reflections
28 parameters
$\Delta \rho_{\text {min }}=-2.55 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{U} 1-\mathrm{Te} 1$	$3.0961(6)$	$\mathrm{Te} 2-\mathrm{Te} 2^{\mathrm{ii}}$	$3.1551(4)$
$\mathrm{U} 1-\mathrm{Te} 2$	$3.1118(4)$	$\mathrm{Cs} 1-\mathrm{T} 1^{\mathrm{iii}}$	$3.8725(5)$
$\mathrm{U} 1-\mathrm{Te} 3^{\mathrm{i}}$	$3.3599(4)$	$\mathrm{Cs} 1-\mathrm{Te} 2$	$3.9828(6)$
$\mathrm{Zr} 1-\mathrm{Te} 3^{\mathrm{i}}$	$2.8890(6)$	$\mathrm{Cs} 1-\mathrm{Te} 1^{\mathrm{iv}}$	$4.0608(8)$
$\mathrm{Zr} 1-\mathrm{Te} 1$	$2.9087(4)$	$\mathrm{Cs} 1-\mathrm{Te} 3$	$4.1193(5)$

Symmetry codes: (i) $-x,-y,-z+1$; (ii) $x+\frac{1}{2}, y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x, y, z+1$.

The structure was standardized by means of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest peak is $0.03 \AA$ and the deepest hole is $1.82 \AA$ from atom U.

Data collection: SMART (Bruker, 2003); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: CRYSTALMAKER (CRYSTALMAKER Software, 2005); software used to prepare material for publication: SHELXTL.

Funding for this work was kindly provided by the US Department of Energy, grant No. ER-15522.

References

Beck, H. P. \& Dausch, W. (1988). Z. Naturforsch. Teil B, 43, 1547-1550.
Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Cody, J. A. \& Ibers, J. A. (1995). Inorg. Chem. 34, 3165-3172.
CrystalMaker Software (2005). CRYSTALMAKER. Version 1.3. CrystalMaker Software Ltd., Yarnton, Oxfordshire OX5 1PF, England. Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Orlygsson, G. \& Harbrecht, B. (2001). J. Am. Chem. Soc. 123, 4168-4173.
Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

