Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Synthesis, structure, and magnetic and electronic properties of Cs₂Hg₂USe₅ Daniel E. Bugaris, Daniel M. Wells, James A. Ibers *

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

ARTICLE INFO

Article history: Received 22 September 2008 Received in revised form 5 January 2009 Accepted 14 January 2009 Available online 21 January 2009

Keywords: Uranium mercury chalcogenide Synthesis Crystal structure Magnetism Electrical conductivity

ABSTRACT

The compound Cs₂Hg₂USe₅ was obtained from the solid-state reaction of U, HgSe, Cs₂Se₃, Se, and CsI at 1123 K. This material crystallizes in a new structure type in space group *P*2/*n* of the monoclinic system with a cell of dimensions a = 10.276(6)Å, b = 4.299(2)Å, c = 15.432(9)Å, $\beta = 101.857(6)$ Å, and V = 667.2(6)Å³. The structure contains ${}^{2}_{\infty}$ [Hg₂USe₅] layers separated by Cs atoms. Within the layers are distorted HgSe₄ tetrahedra and regular USe₆ octahedra. In the temperature range of 25–300 K Cs₂Hg₂USe₅ displays Curie–Weiss paramagnetism with $\mu_{eff} = 3.71(2) \mu_{B}$. The compound exhibits semiconducting behavior in the [010] direction; the conductivity at 298 K is 3×10^{-3} S/cm. Formal oxidation states of Cs/Hg/U/Se may be assigned as +1/+2/+4/-2, respectively.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The extensive variety of structures and physical properties in binary uranium chalcogenide chemistry [1] has spurred interest in ternary and quaternary compounds [2]. Among the quaternaries, the A/M/U/Q (A = alkali metal; M = transition metal; Q = S, Se, or Te) family of compounds probably has been the most intensively studied. It is somewhat surprising that only five compositionally different quaternary phases have been identified whereas 10 different binary actinide chalcogenides are known, namely U₄Q₃, UQ, U₃Q₄, U₂Q₃, U₃Q₅, U₇Q₁₂, UQ₂, U₂Q₅, UQ₃, and UQ₅ [1]. The most common quaternary phase observed is that of the *AMU*Q₃ (A = K, Rb, Cs; M = Cu, Ag) [3–6] family, which adopts the layered KZrCuS₃ [7] structure type. Other reported quaternary compounds in the A/M/U/Q family include CsMUTe₅ (M = Ti, Zr) [3,8], Cs₈Hf₅UTe_{30.6} [3], A_6 Cu₁₂U₂S₁₅ (A = K, Rb) [9,10], and K₂Cu₃US₅ [11].

Here we continue our investigation of A/Hg/U/Q phases. These are potentially of interest because Hg can adopt different oxidation states (+1 or +2) and because it can display coordination numbers of two, three, or four. Moreover, Hg readily forms quaternary A/Hg/Ln/Q (Ln = rare-earth metal) compounds, for example CsLnHgSe₃ (Ln = La–Nd, Sm, Gd, Y) [12]. The only known quaternary Hg/U chalcogenide is the salt [Hg₃Te₂][UCl₆] [13]. Here we report the synthesis, crystal structure, and magnetic and electronic properties of Cs₂Hg₂USe₅.

E-mail address: ibers@chem.northwestern.edu (J.A. Ibers).

2. Experimental

2.1. Syntheses

The following reagents were used as obtained: U turnings (depleted, Oak Ridge National Laboratory), Cs (Strem Chemicals, 99.5%), Se (Cerac, 99.999%), HgSe (Alfa Aesar, 99.9%), and CsI (Strem Chemicals, 99.9%). Finely divided U powder was prepared by a modification [13] of the literature procedure [14]. The reactive flux [15], Cs₂Se₃, was prepared by the stoichiometric reaction of the elements in liquid NH₃ at 194 K. The remaining reactants were used as obtained. Reactions were carried out in carbon-coated fused-silica tubes. The tubes were charged with reaction mixtures under an Ar atmosphere in a glove box and then they were evacuated to ~10⁻⁴ Torr and flame sealed. Selected single crystals from each reaction were examined with an EDX-equipped Hitachi S-3500 SEM.

2.2. Synthesis of Cs₂Hg₂USe₅

The reaction mixture consisted of 0.17 mmol of U, 0.17 mmol of HgSe, 0.11 mmol of Cs_2Se_3 , 0.16 mmol of Se, and approximately 90 mg of CsI as a flux. The reaction mixture was placed in a computer-controlled furnace where it was heated to 1123 K in 24 h, kept at 1123 K for 96 h, cooled to 473 K in 96 h, and then quickly cooled to 298 K. The product consisted of long black plates of $Cs_2Hg_2USe_5$ in about 25 wt% yield (based on U) and an amorphous black melt. EDX analysis of selected crystals showed the presence of Cs, Hg, U, and Se, but not of I. The compound is moderately stable in air.

^{0022-4596/\$ -} see front matter \circledcirc 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2009.01.013

2.3. Structure determination

Single-crystal X-ray diffraction data were collected with the use of graphite-monochromatized MoK α radiation ($\lambda = 0.71073$ Å) at 153 K on a Bruker Smart-1000 CCD diffractometer [16]. The crystal-to-detector distance was 5.023 cm. Crystal decay was monitored by recollecting 50 initial frames at the end of the data collection. Data were collected by a scan of 0.3° in ω in groups of 606 frames at φ settings of 0°, 90°, 180°, and 270°. The exposure time was 20 s/frame. The collection of intensity data was carried out with the program SMART [16]. Cell refinement and data reduction were carried out with the use of the program SAINT v7.23a in APEX2 [17]. Face-indexed absorption corrections were performed numerically with the use of the program SADABS [16]. The program SADABS was also employed to make incident beam and decay corrections. The structure was solved with the direct methods program SHELXS and refined with the full-matrix leastsquares program SHELXL [18]. Additional experimental details are given in Table 1 and the Supporting material. Selected metrical details are presented in Tables 2 and 3.

2.4. Magnetic susceptibility measurement

Magnetic susceptibility as a function of temperature was measured on a 5.04 mg sample of ground single crystals of $Cs_2Hg_2USe_5$ with the use of a Quantum Design MPMS5 SQUID magnetometer. The sample was loaded into a gelatin capsule. Both

 Table 1

 Crystal data and structure refinement for Cs₂Hg₂USe₅.

1299.83
P2/n
2
10.276(6)
4.299(2)
15.432(9)
101.857(6)
667.2(6)
153(2)
0.71073
6.470
54.02
0.026
0.063

^a $R(F) = \Sigma ||F_o| - F_c|| / \Sigma |F_o|$ for $F_o^2 > 2\sigma (F_o^2)$.

^b For $F_o^2 < 0$, $w^{-1} = \sigma^2(F_o^2)$; for $F_o^2 \ge 0$, $w^{-1} = \sigma^2(F_o^2) + (0.0262 \times P)^2 + 4.3335 \times P$; $P = (F_o^2 + 2 \times F_c^2)/3$.

Table 2					
Selected	interatomic	distances	(Å) for	Cs ₂ Hg ₂ USe	, a

Hg–Se(1)	2.526(1)
Hg–Se(1)	2.928(1)
Hg–Se(2)	2.846(1)
Hg-Se(3)	2.526(1)
$U-Se(1) \times 2$	2.872(1)
$U-Se(2) \times 2$	2.892(1)
$U-Se(2) \times 2$	2.902(1)
Cs-Se(1)	3.601(2)
Cs-Se(1)	3.641(2)
Cs-Se(1)	4.224(2)
Cs-Se(2)	3.663(2)
Cs-Se(2)	3.673(2)
Cs-Se(2)	4.171(2)
Cs-Se(3)	3.536(2)
Cs-Se(3)	4.057(2)

^a The U and Se(3) atoms have crystallographic symmetry 2.

Table 3

Selected interatomic angles (deg) for $Cs_2Hg_2USe_5$.

Se(1)-Hg-Se(1)	103.08(5)	
Se(1)-Hg-Se(2)	91.09(4)	
Se(1)-Hg-Se(2)	103.25(4)	
Se(1)-Hg-Se(3)	90.82(4)	
Se(1)–U–Se(1)	175.22(3)	
$Se(1)-U-Se(2) \times 2$	85.36(4)	
$Se(1)-U-Se(2) \times 2$	88.90(4)	
$Se(1)-U-Se(2) \times 2$	91.09(4)	
$Se(1)-U-Se(2) \times 2$	94.65(4)	
Se(2)–U–Se(2)	84.03(5)	
Se(2)–U–Se(2)	84.39(5)	
$Se(2)-U-Se(2) \times 2$	95.79(5)	
$Se(2)-U-Se(2) \times 2$	179.82(2)	

zero-field cooled (ZFC) and field-cooled (FC) susceptibility data were collected between 2 and 300 K at an applied field of 500G. All data were corrected for electron core diamagnetism [19].

2.5. Single-crystal electrical conductivity measurement

The electrical resistivity of a single crystal of $Cs_2Hg_2USe_5$ was measured along [010] between 2 and 300K by standard fourprobe ac methods with the use of a Quantum Design PPMS instrument. A crystal, 1.044 mm in length, was mounted with four leads constructed of 15 μ m diameter Cu wire and 8 μ m diameter graphite fibers, and attached with Dow 4929N silver paint.

3. Results and discussion

3.1. Synthesis

Black single crystals of $Cs_2Hg_2USe_5$ were obtained in about 25 wt% yield by the reaction of U, HgSe, Cs_2Se_3 , Se, and CsI (as flux) at 1123 K. Attempts to synthesize the sulfide analog of $Cs_2Hg_2USe_5$ produced crystals of $Cs_2Hg_6S_7$ [20]. Efforts to synthesize the telluride analog led just to the recrystallization of HgTe.

3.2. Structure

Cs₂Hg₂USe₅ crystallizes in a new structure type (Fig. 1) in space group P2/n of the monoclinic system. Its structure comprises twodimensional $^{2}_{\infty}$ [Hg₂USe₅] layers stacked along c^{*} that are separated by Cs atoms. Each U atom is octahedrally coordinated to six Se atoms. Every USe₆ octahedron shares its edges along [010] with two other octahedra to form a one-dimensional $\frac{1}{2}$ [USe₄] chain. The Hg atoms form two short Hg-Se bonds and two long Hg-Se bonds to give a distorted tetrahedral environment. The HgSe₄ tetrahedra share two corners along [010] to form one-dimensional $^{1}_{\infty}$ [HgSe₇] chains. Furthermore, each HgSe₄ tetrahedron shares a corner along [100] with another HgSe₄ tetrahedron to form a Hg₂Se₇ dimer. Finally, the HgSe₄ tetrahedra share edges with two USe₆ octahedra along [100] to form the two-dimensional $^{2}_{\infty}$ [Hg₂USe₅] layers, as shown in Fig. 2. The Cs atoms are eightcoordinate and form bicapped trigonal prisms with Se atoms. Each CsSe₈ prism has two face-sharing neighbors along [010] and fouredge sharing ones along [100] to form a two-dimensional $\frac{2}{2}$ [CsSe₃] layer, which is illustrated in Fig. 3.

Because there are no Se–Se bonds in the structure of $Cs_2Hg_2USe_5$, the formal oxidation states of Cs/Hg/U/Se may be assigned most reasonably as +1/+2/+4/-2 or as +1/+1/+6/-2, respectively. The U–Se distances, varying from 2.872(1) to 2.902(1)Å, are comparable to those of 2.8715(4)–2.8723(5)Å for

Fig. 1. The crystal structure of Cs₂Hg₂USe₅, viewed down [010].

Fig. 2. The two-dimensional ${}^2_{\infty}$ [Hg₂USe₅] layer, viewed down c^* .

CsAgUSe₃ [6], and 2.850(2)–3.126(3) Å for UMnSe₃ [21], both U(IV) compounds. There are no examples of uranium(VI) selenide compounds. However, as the ionic radius decreases from U(IV) to U(V) to U(VI) (0.89–0.76–0.73 Å) [22] the bonding distances should also decrease. Compare the U–S bond distances of 2.714(1)–2.7165(9) Å in KCuUS₃ [6], a compound containing U(IV)S₆ octahedra, to those of 2.587(1)–2.6827(9) in K₂Cu₃US₅

Fig. 3. The two-dimensional ${}^{2}_{\infty}$ [CsSe₃] layer, viewed down c^{*} .

Fig. 4. Inverse magnetic susceptibility $(1/\chi_m)$ vs. *T* for Cs₂Hg₂USe₅.

[11], a compound containing U(V)S₆ octahedra. Therefore, the U–Se distances in the present compound strongly support the presence of U(IV). The magnetic data discussed below are also consistent with U(IV) and not with U(VI). Moreover, the Hg–Se distances of 2.526(1)-2.928(1)Å in $Cs_2Hg_2USe_5$ are similar to those of 2.50(1)-2.92(1)Å for Hg_4SiSe_6 [23], a compound containing Hg(II)Se₄ tetrahedra. The Cs…Se distances, ranging from 3.536(2) to 4.223(2)Å, are within the range of 3.498(2)-4.817(2)Å in CSSmGeSe₄ [24].

3.3. Magnetic susceptibility

Fig. 4 shows the temperature dependence of the inverse molar susceptibility $(1/\chi_m)$ for $Cs_2Hg_2USe_5$ for both ZFC and FC data, which are superimposable. For T > 25 K, the data can be fit to the Curie–Weiss law $\chi^{-1} = (T-\theta_p)/C$. The values of the Curie constant *C* and the Weiss constant θ_p are 1.720(2) emu K mol⁻¹ and -80.3(4) K, respectively. The negative value of θ_p may indicate some local antiferromagnetic ordering. The effective magnetic moment, μ_{eff} , as calculated from the equation $\mu_{eff} = (7.997C)^{1/2} \mu_B$ [25], of 3.71(2) μ_B is within the range of the theoretical values for U(IV) [26] of 3.58 μ_B (*LS* coupling) to 3.84 μ_B (*jj* coupling). The μ_{eff} value of 3.71(2) μ_B for $Cs_2Hg_2USe_5$ is also consistent with the

Fig. 5. Plot of $\ln \sigma$ vs. 1/T for Cs₂Hg₂USe₅.

values of 3.82 and 3.65 μ_B , respectively, for the U(IV) chalcogenides K₄USe₈ [27] and KCuUSe₃ [4]. If Cs₂Hg₂USe₅ were a compound of Hg(I) and U(VI), then it would be diamagnetic.

3.4. Electrical conductivity

As expected for a stoichiometric U(IV) compound, Cs₂Hg₂USe₅ displays semiconducting behavior. The temperature dependence of its electrical conductivity along [010] is shown in Fig. 5. At 298 K the conductivity σ is 3×10^{-3} S/cm. Below 258 K, the sample resistance is beyond the detection limits of the instrument. This semiconductor shows a simple Arrhenius-type thermal activation $\sigma = \sigma_0 \exp(-(E_a/(k_B T)))$, where k_B is the Boltzmann constant. The calculated thermal activation energy, E_a , is 0.155(1) eV. For intrinsic semiconductors, $E_a \approx \frac{1}{2}E_{gap}$ [28]; thus the band gap should be approximately 0.3 eV. This value is consistent with both the black color of the present compound as well as with that of 0.3 eV for both CsCuUS₃ [6] and KCuUSe₃ [4], other members of the *A*/*M*/U/Q family of compounds.

Supporting material

The crystallographic file in CIF format for $Cs_2Hg_2USe_5$ has been deposited with FIZ Karlsruhe as CSD number 419885. It may be obtained free of charge by contacting FIZ Karlsruhe at +497247808 666 (fax) or crysdata@fiz-karlsruhe.de (e-mail).

Acknowledgment

This research was supported by the US Department of Energy BES Grant ER-15522.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at 10.1016/j.jssc.2009.01.013.

References

- I. Grenthe, J. Drozdzynski, T. Fujino, E.C. Buck, T.E. Albrecht-Schmitt, S.F. Wolf, Uranium, in: L.R. Morss, N.M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, vol. 1, third ed., Springer, Dordrecht, 2006, pp. 253–698.
- [2] A.A. Narducci, J.A. Ibers, Chem. Mater. 10 (1998) 2811-2823.
- [3] J.A. Cody, J.A. Ibers, Inorg. Chem. 34 (1995) 3165–3172.
- [4] A.C. Sutorik, J. Albritton-Thomas, T. Hogan, C.R. Kannewurf, M.G. Kanatzidis, Chem. Mater. 8 (1996) 751–761.
- [5] F.O. Huang, K. Mitchell, J.A. Ibers, Inorg. Chem. 40 (2001) 5123-5126.
- [6] J. Yao, D.M. Wells, G.H. Chan, H.-Y. Zeng, D.E. Ellis, R.P. Van Duyne, J.A. Ibers, Inorg. Chem. 47 (2008) 6873–6879.
- [7] M.F. Mansuetto, P.M. Keane, J.A. Ibers, J. Solid State Chem. 101 (1992) 257-264.
- [8] J.-Y. Kim, D.L. Gray, J.A. Ibers, Acta Cryst. Sect. Struct. Rep. Online 62 (2006) i124-i125.
- [9] A.C. Sutorik, R. Patschke, J. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Chem. Eur. J. 6 (2000) 1601–1607.
- [10] J. Yao, J.A. Ibers, unpublished results.
- [11] D.L. Gray, L.A. Backus, H.-A. Krug von Nidda, S. Skanthakumar, A. Loidl, L. Soderholm, J.A. Ibers, Inorg. Chem. 46 (2007) 6992–6996.
- [12] K. Mitchell, F.Q. Huang, A.D. McFarland, C.L. Haynes, R.C. Somers, R.P. Van Duyne, J.A. Ibers, Inorg. Chem. 42 (2003) 4109–4116.
- [13] D.E. Bugaris, J.A. Ibers, J. Solid State Chem. 181 (2008) 3189-3193.
- [14] A.J.K. Haneveld, F. Jellinek, J. Less-Common Met. 18 (1969) 123-129.
- [15] S.A. Sunshine, D. Kang, J.A. Ibers, J. Am. Chem. Soc. 109 (1987) 6202-6204.
- [16] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.45a Data Processing Software for the SMART System, Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA, 2003.
- [17] Bruker, APEX2 Version 2.1-4 and SAINT Version 7.23a Data Collection and Processing Software, Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA, 2006.
- [18] G.M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr. 64 (2008) 112-122.
- [19] L.N. Mulay, E.A. Boudreaux, Theory and Applications of Molecular Diamagnetism, Wiley-Interscience, New York, 1976.
- [20] D.E. Bugaris, J.A. Ibers, Acta Cryst. Sect. E Struct. Rep. Online 64 (2008) 55–56.
 [21] I. Ijjaali, K. Mitchell, F.Q. Huang, J.A. Ibers, J. Solid State Chem. 177 (2004) 257–261.
- [22] R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32 (1976) 751–767.
- [23] L.D. Gulay, I.D. Olekseyuk, O.V. Parasyuk, J. Alloys Compd. 347 (2002) 115-120.
- [24] B.R. Martin, P.K. Dorhout, Inorg. Chem. 43 (2004) 385-391.
- [25] C.J. O'Connor, Prog. Inorg. Chem. 29 (1982) 203-283.
- [26] K.S. Pitzer, Quantum Chemistry, Prentice-Hall, Inc., New York, 1953.
- [27] A.C. Sutorik, M.G. Kanatzidis, J. Am. Chem. Soc. 113 (1991) 7754-7755.
- [28] C. Kittel, Introduction to Solid State Physics, seventh ed., Wiley, New York, 1996.