Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Dicerium orthosilicate selenide and dicerium orthosilicate telluride, $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) Q(Q=\mathrm{Se}$ or Te$)$

Bin Deng, Jiyong Yao and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
Correspondence e-mail: ibers@chem.northwestern.edu

Received 10 August 2004
Accepted 27 September 2004
Online 22 October 2004

The crystal structures of two new quaternary compounds, viz. dicerium orthosilicate selenide and dicerium orthosilicate telluride, $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) Q(Q=\mathrm{Se}$ or Te$)$, have been determined from single-crystal X-ray diffraction data. Each structure comprises infinite chains of SiO_{4} tetrahedra separated by Ce and Q atoms. The site symmetries are $\mathrm{Ce} m$ and $2, \mathrm{Si} 2$ and Q m. The O atoms are in general positions.

Comment

$\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) Q(Q=\mathrm{Se}$ or Te$)$ are new members of the $\mathrm{Ln}_{2}\left(\mathrm{SiO}_{4}\right) Q(Q=\mathrm{S}$, Se or Te$)$ series $[Q=\mathrm{S}$ and $\mathrm{Ln}=\mathrm{Ho}$ (Hartenbach et al., 2002); $Q=\mathrm{Se}$ and $\mathrm{Ln}=\mathrm{La}$ (Brennan $\&$ Ibers, 1991), Nd (Grupe \& Urland, 1990), Sm, Dy and Ho (Person et al., 2000), Er (Stöwe, 1994) and Tb (Ijjaali et al., 2002); $Q=\mathrm{Te}$ and $\mathrm{Ln}=\operatorname{Pr}$ (Weber \& Schleid, 1999), Nd (Yang \& Ibers, 2000), Sm (Yang \& Ibers, 2000; Person et al., 2000)

Figure 1
The structure of $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$, viewed along [001].
and Gd (Ijjaali \& Ibers, 2001)], as shown in Table 1. These compounds usually adopt an orthorhombic (Pbcm) structure, but some of the $Q=\mathrm{Te}$ compounds are dimorphic and also adopt a monoclinic $\left(P 2_{1} / c\right)$ structure (Table 1). Each of the two compounds reported here crystallizes in space group Pbcm and has a layered structure.

The structures of the title compounds both comprise infinite chains of SiO_{4} tetrahedra along [001], separated by Ln and Q atoms (as shown in Fig. 1 for $Q=\mathrm{Se}$). The SiO_{4} tetrahedron in each structure has symmetry m but is somewhat distorted, with $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles in the range $104.36(13)-119.01(13)^{\circ}$ in $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$ and $103.0(2)-119.79$ (13) ${ }^{\circ}$ in $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}$.

Although the two structures are similar, they are not strictly isostructural, differing in the coordination about the Ce atoms (Figs. 2 and 3).

In $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$, the $\mathrm{Ce}-\mathrm{O}$ distances are in the range 2.475 (3) -2.578 (2) \AA, which may be compared with the range of 2.374 (3) -2.523 (5) \AA i observed in $\mathrm{Ce}_{3.67} \mathrm{Ti}_{2} \mathrm{O}_{3} \mathrm{Se}_{6}$ (Tougait

Figure 2
The coordination geometries of atoms Ce 1 and Ce 2 in $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (b) $x, y-1, z$; (f) $x, \frac{1}{2}-y,-z$; (h) $-x, y-\frac{1}{2}, \frac{1}{2}-z$; (j) $-x, y-\frac{1}{2}, \frac{1}{2}-z ;(m) 1-x,-y,-z ;(n) 1-x, 1-y,-z ;$ (o) $x, y-1$, $\left.\frac{1}{2}-z ;(p) x, y, \frac{1}{2}-z ;(r)-x, \frac{1}{2}-y, z ;(t) 1-x, y-\frac{1}{2}, z ;(u) 1-x, \frac{1}{2}+y, z.\right]$

Figure 3
The coordination geometries of atoms Ce 1 and Ce 2 in $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}$. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (b) $x, y-1, z ;(c) x, y+1, z ;(h) \mathrm{x}, \frac{1}{2}-y,-z ;(j)-x$, $y-\frac{1}{2}, \frac{1}{2}-z ;(l) 1-x, y-\frac{1}{2}, \frac{1}{2}-z ;(o) 1-x,-y,-z ;(p) 1-x, 1-y,-z$; (q) $x, y-1, \frac{1}{2}-z ;(r) x, y, \frac{1}{2}-z ;(t)-x, y-\frac{1}{2}, z ;(v) 1-x, y-\frac{1}{2}, z$; (w) $1-x, \frac{1}{2}+y, z$.]
\& Ibers, 2000). The $\mathrm{Ce}-\mathrm{Se}$ distances are in the range 3.0157 (7)-3.1926 (4) A. compared with a range of 2.8999 (9)3.2864 (12) \AA in $\mathrm{Ce}_{3.67} \mathrm{Ti}_{2} \mathrm{O}_{3} \mathrm{Se}_{6}$. In $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}$, the $\mathrm{Ce}-\mathrm{O}$ distances are in the range 2.495 (3) -2.621 (3) \AA, which may also be compared with the range in $\mathrm{Ce}_{3.67} \mathrm{Ti}_{2} \mathrm{O}_{3} \mathrm{Se}_{6}$.

The $\mathrm{Ce}-\mathrm{Te}$ distances are in the range $3.2082(5)-$ 3.3704 (5) \AA, compared with 3.1898 (8)-3.3032 (11) \AA in $\mathrm{K}_{2} \mathrm{Ag}_{3} \mathrm{CeTe}_{4}$ (Patschke et al., 1998).

Experimental

The reactive flux, $\mathrm{Cs}_{2} \mathrm{Se}_{3}$, was prepared by the stoichiometric reaction of Cs (Aldrich, 99.5%) and Se (Aldrich, 99.5\%) in liquid NH_{3}. Most of the compounds listed in Table 1 were synthesized accidentally, and the present compounds were no exception. Clear light-red needles of $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right)$ Se were obtained accidentally in the reaction of $\mathrm{Ce}(71 \mathrm{mg}$, Alfa Aesar, 99.9%), $\mathrm{Se}(40 \mathrm{mg}$, Aldrich, 99.5%) $\mathrm{CsCl}(150 \mathrm{mg}$, Aldrich, 99.9%) and $\mathrm{Cs}_{2} \mathrm{Se}_{3}(150 \mathrm{mg})$. The materials were mixed and sealed in an unprotected fused-silica tube that was then evacuated to 10^{-4} Torr $(1 \mathrm{Torr}=133.322 \mathrm{~Pa})$. The tube was heated to 1173 K , kept at 1173 K for 72 h , cooled at $4 \mathrm{~K} \mathrm{~h}^{-1}$ to 473 K , and then the furnace was turned off. The reaction mixture was washed with deionized water and finally dried with acetone. Qualitative energy dispersive spectroscopy (EDS) analysis verified the presence of Ce, Si, and Se . The light-yellow needles of $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right)$ Te were grown accidentally in the reaction of Ce (70 mg , Alfa Aesar, 99.9%), Ti (48 mg , Aldrich, 99.9%), TeO_{2} (80 mg , Aldrich, 99.995%), Te (80 mg , Strem, 99.9%) and $\mathrm{KCl}(150 \mathrm{mg}$, Aldrich, $99.9 \%)$. The mixture was sealed in an unprotected fused-silica tube that was then evacuated to 10^{-4} Torr. The tube was heated to 1073 K , kept at 1073 K for 72 h , cooled at $4 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K , and then the furnace was turned off. The reaction product was washed with water and dried with actone. Qualitative EDS analysis verified the presence of Ce, Si, and Te .

Compound (I)

Crystal data

$\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$
$M_{r}=451.29$
Orthorrombic, $P b c m$
$a=6.2250(6) \AA$
$b=7.2354(7) \AA$
$c=11.0739(10) \AA$
$V=498.77(8) \AA^{3}$
$Z=4$
$D_{x}=6.010 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART 1000 CCD area-

 detector diffractometer$0.3^{\circ} \omega$ scans
Absorption correction: numerical
(SHELXTL; Sheldrick, 2003)
$T_{\text {min }}=0.067, T_{\text {max }}=0.274$
5011 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.059$
$S=1.49$
662 reflections
42 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.03 P)^{2}\right]$ where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$

662 independent reflections
643 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 14$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=2.03 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.49 \mathrm{e}^{-3}$
Extinction correction: SHELXTL
(Sheldrick, 2003)
Extinction coefficient: 0.0019 (3)

Table 1
The currently known $\mathrm{Ln}_{2}\left(\mathrm{SiO}_{4}\right) Q(Q=\mathrm{Te}, \mathrm{Se}, \mathrm{S})$ compounds.

$Q=\mathrm{Te}$	$Q=\mathrm{Se}$	$Q=\mathrm{S}$
$\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}^{a}(P b c m)$	$\mathrm{La}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{b}(P b c m)$	$\mathrm{Ho}_{2} \mathrm{SiO}_{4} \mathrm{~S}^{c}(P b c m)$
$\mathrm{Pr}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}^{d}\left(P b c m\right.$ and $\left.P 2_{1} / c\right)$	$\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{a}(P b c m)$	
$\mathrm{Nd}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}^{e}\left(P b c m\right.$ and $\left.P 2_{1} / c\right)$	$\mathrm{Nd}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{f}(P b c m)$	
$\mathrm{Sm}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}^{e, g}\left(P b c m\right.$ and $\left.P 2_{1} / c\right)$	$\mathrm{Sm}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{g}(P b c m)$	
$\mathrm{Gd}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}^{h}(P b c m)$	$\mathrm{Tb}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{i}(P b c m)$	
	$\mathrm{Dy}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{g}(P b c m)$	
	$\mathrm{Ho}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{g}(P b c m)$	
	$\mathrm{Er}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}^{j}(P b c m)$	

Notes: (a) This work; (b) Brennan \& Ibers (1991); (c) Hartenbach et al. (2002); (d) Weber \& Schleid (1999); (e) Yang \& Ibers (2000); (f) Grupe \& Urland (1990); (g) Person et al. (2000); (h) Ijjaali \& Ibers (2001); (i) Ijjaali et al. (2002); (j) Stöwe (1994).

Table 2
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Ce} 1-\mathrm{O} 1^{\text {i }}$	2.480 (3)	$\mathrm{Ce} 2-\mathrm{O} 1^{\text {iv }}$	2.504 (3)
$\mathrm{Ce} 1-\mathrm{O} 1^{\text {ii }}$	2.486 (3)	$\mathrm{Ce} 2-\mathrm{O} 2^{\text {v }}$	2.518 (3)
Ce1-O2	2.578 (2)	$\mathrm{Ce} 2-\mathrm{Se}$	3.1926 (4)
$\mathrm{Ce} 1-\mathrm{Se}{ }^{\text {iii }}$	3.0157 (7)	$\mathrm{Si}-\mathrm{O} 2$	1.630 (3)
$\mathrm{Ce} 1-\mathrm{Se}$	3.1802 (6)	$\mathrm{Si}-\mathrm{O} 1^{\text {i }}$	1.647 (3)
Ce2-O2	2.475 (3)		
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Si}-\mathrm{O} 2$	106.2 (2)	$\mathrm{O} 2-\mathrm{Si}-\mathrm{O} 1^{\text {i }}$	104.36 (13)
$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Si}-\mathrm{O} 1^{\text {i }}$	119.01 (13)	$\mathrm{O} 1^{\text {vii }}-\mathrm{Si}-\mathrm{O} 1^{\text {i }}$	104.8 (2)

Compound (II)

Crystal data

$\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}$	Mo $K \alpha$ radiation
$M_{r}=499.93$	Cell parameters from 5770
Orthorhombic, $P b c m$	reflections
$a=6.3647(6) \AA$	$\theta=3.2-28.9^{\circ}$
$b=7.2807(7) \AA$	$\mu=22.82 \mathrm{~mm}^{-1}$
$c=11.2743(10) \AA$	$T=153(2) \mathrm{K}$
$V=522.45(8) \AA^{3}$	Needle, light yellow
$Z=4$	$0.080 \times 0.052 \times 0.042 \mathrm{~mm}$
$D_{x}=6.356 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Bruker SMART 1000 CCD area-	690 independent reflections
\quad detector diffractometer	666 reflections with $I>2 \sigma(I)$
$0.3^{\circ} \omega$ scans	$R_{\text {int }}=0.034$
Absorption correction: numerical	$\theta_{\max }=28.9^{\circ}$
$\quad(S H E L X T L ;$ Sheldrick, 2003)	$h=-8 \rightarrow 8$
$\quad T_{\text {min }}=0.244, T_{\text {max }}=0.423$	$k=-9 \rightarrow 9$
5770 measured reflections	$l=-15 \rightarrow 14$

inorganic compounds

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.057$
$S=1.34$
690 reflections
42 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.031 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=1.99 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-2.03 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXTL
Extinction coefficient: 0.0071 (4)

In $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Se}$, the highest residual electron density is $0.03 \AA$ from the Ce 2 site and the deepest hole is $0.69 \AA$ from this same site. In $\mathrm{Ce}_{2}\left(\mathrm{SiO}_{4}\right) \mathrm{Te}$, the highest residual electron density is $0.01 \AA$ from the Ce 2 site and the deepest hole is $0.61 \AA$ from Te .

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINTPlus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: $X P$ in SHELXTL.

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1760). Services for accessing these data are described at the back of the journal.

References

Brennan, T. D. \& Ibers, J. A. (1991). Acta Cryst. C47, 1062-1064.
Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
Grupe, M. \& Urland, W. (1990). Z. Naturforsch. Teil B, 45, 465-468.
Hartenbach, I., Meier, S. F., Wontcheu, J. \& Schleid, T. (2002). Z. Anorg. Allg. Chem. 628, 2907-2913.
Ijjaali, I. \& Ibers, J. A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 487-488.
Ijjaali, I., Mitchell, K. \& Ibers, J. A. (2002). Z. Kristallogr. New Cryst. Struct. 217, 157-158.
Patschke, R., Brazis, P., Kannewurf, C. R. \& Kanatzidis, M. (1998). Inorg. Chem. 37, 6562-6563.
Person, H., Grupe, M. \& Urland, W. (2000). Z. Anorg. Allg. Chem. 626, $280-$ 283.

Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Stöwe, K. (1994). Z. Naturforsch. Teil B, 49, 733-740.
Tougait, O. \& Ibers, J. A. (2000). Chem. Mater. 12, 2653-2658.
Weber, F. A. \& Schleid, T. (1999). Z. Anorg. Allg. Chem. 625, 2071-2076.
Yang, Y. \& Ibers, J. A. (2000). J. Solid State Chem. 155, 433-440.

