Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bin Deng and James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA

Correspondence e-mail:
ibers@chem.northwestern.edu

Key indicators

Single-crystal X-ray study
$T=153 \mathrm{~K}$
Mean $\sigma(\mathrm{i}-\mathrm{O})=0.006 \AA$
R factor $=0.024$
$w R$ factor $=0.055$
Data-to-parameter ratio $=13.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dicerium disilicate, $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$

Dicerium disilicate, $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$, crystallizes in space group $P 4_{1}$ of the tetragonal system. It has isostructural analogues among the disilicates of the larger rare-earth elements, namely $L n_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ (Ln is La, Pr, Nd or Sm). The structure consists of discrete Ce^{3+} cations and $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$ anions; the asymmetric unit containing four cations and two anions. Each anion is formed from two SiO_{4} tetrahedra that share a vertex.

Comment

$\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ is a member of the $L n_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ ($L n$ is a rare earth) family, which includes at least seven different structure types (Felsche, 1973; Müller-Bunz \& Schleid, 2000). It crystallizes in space group $P 4_{1}$ and is a Type A structure in the nomenclature of Felsche (1973). $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ is isostructural with $\mathrm{La}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ (Dago et al., 1980; Müller-Bunz \& Schleid, 2000), $\mathrm{Pr}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ (Felsche, 1970, 1971, 1973), $\mathrm{Nd}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ (Chi et al., 1997) and $\mathrm{Sm}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ (Smolin et al., 1970). Its structure differs minimally from those of the others, mainly in increased precision and in slight changes in the distances about the $L n$ atoms engendered by the lanthanide contraction and by the low temperature of data collection.

The crystal structure of this family of $L n_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ compounds was described in detail earlier (Felsche, 1973). Fig. 1 shows the asymmetric unit of $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ and Fig. 2 shows the crystal structure, which comprises discrete Ce^{3+} cations and isolated $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{6-}$ anions. These are arranged in four sheets perpendicular to [001]. Within each of the four adjacent sheets, the $\left(\mathrm{Si}_{2} \mathrm{O}_{7}\right)$ units and Ce atoms form rows parallel to [110].

Table 1 provides selected geometric parameters. The coordination numbers for $\mathrm{Ce} 1, \mathrm{Ce} 2, \mathrm{Ce} 3$ and Ce 4 are $8,9,8$ and 7, respectively, for $\mathrm{Ce}-\mathrm{O}$ distances less than $3.0 \AA$. The $\mathrm{Ce}-\mathrm{O}$ distances range from 2.356 (6) to 2.909 (6) \AA, compared to $\mathrm{La}-\mathrm{O}$ distances of $2.395(7)-2.859(7) \AA$ in $\mathrm{La}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$

Figure 1
A view of the asymmetric unit of $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$, with displacement ellipsoids at the 90% probability level.

Received 1 April 2005 Accepted 8 April 2005 Online 23 April 2005

Figure 2
The structure of $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$, viewed down [010].
(Müller-Bunz \& Schleid, 2000). The $\mathrm{Si}-\mathrm{O}$ bond lengths involving the bridging O atom are generally longer than the other $\mathrm{Si}-\mathrm{O}$ bonds: for $\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right], 1.644$ (6)-1.679 (6) \AA versus 1.581 (6)-1.658 (6) \AA; for $\mathrm{La}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right], \quad 1.645$ (7)1.670 (7) \AA versus $1.593(7)-1.636$ (7) \AA. The $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles range from 100.7 (3) to 116.6 (3) ${ }^{\circ}$ in the Ce compound and from 101.9 (4) to 115.8 (4) ${ }^{\circ}$ in the La compound. The $\mathrm{Si}-$ $\mathrm{O}-\mathrm{Si}$ angles are 129.1 (3) and 132.3 (3) ${ }^{\circ}$ in the Ce compound, versus 128.0 (4) and 132.1 (4) ${ }^{\circ}$ in the La compound.

Experimental

$\mathrm{Ce}_{2}\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]$ was obtained accidentally as green blocks from a solidstate reaction of Ce (45 mg , Alfa Aesar, 99.9%), $\mathrm{V}_{2} \mathrm{O}_{5}$ (25 mg , Aldrich, 99.5%), TeO_{2} (40 mg , Aldrich, 99.995%) and CsCl (250 mg , Aldrich, 99.9%). The reactants were loaded into an unprotected fused-silica tube that was then evacuated to 10^{-4} Torr (1 Torr $=$ 133.322 Pa). The tube was heated to 1073 K , kept at 1073 K for 72 h , cooled at $4 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K , and then the furnace was turned off. The reaction product was washed with deionized water and dried with acetone. Qualitative energy dispersive spectroscopy (EDS) analysis verified the presence of Ce and Si .

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024\)
\(w R\left(F^{2}\right)=0.055\)
\(S=1.15\)
2729 reflections
200 parameters
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.028 P)^{2}\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
```

$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=2.40 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-1.19 \mathrm{e}^{-3}$
Extinction correction: none
Absolute structure: Flack (1983),
with 1284 Friedel pairs
Flack parameter: 0.522 (19)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Ce1-O1	2.414 (5)	Ce3-O5	2.909 (6)
$\mathrm{Ce} 1-\mathrm{O} 2{ }^{\text {i }}$	2.450 (6)	Ce4- $\mathrm{O}^{\text {vii }}$	2.420 (5)
Ce1-O11	2.483 (6)	$\mathrm{Ce} 4-\mathrm{O}{ }^{\text {viii }}$	2.453 (5)
$\mathrm{Ce} 1-\mathrm{O} 5^{\text {ii }}$	2.517 (5)	Ce4-O14	2.459 (6)
Ce1-O14 ${ }^{\text {iii }}$	2.546 (5)	Ce4-O7 ${ }^{\text {ix }}$	2.461 (5)
Ce1-O3	2.553 (5)	Ce4-O10	2.476 (5)
Ce1-O10	2.723 (5)	Ce4-O8 ${ }^{\text {x }}$	2.540 (6)
Ce1-O4	2.774 (5)	Ce4-O13 ${ }^{v}$	2.667 (5)
$\mathrm{Ce} 2-\mathrm{O} 12{ }^{\text {iv }}$	2.384 (6)	Si1-O1 ${ }^{\text {ii }}$	1.611 (6)
Ce2-O6 ${ }^{\text {v }}$	2.426 (5)	Si1-O3	1.630 (5)
Ce2-O5	2.521 (6)	Si1-O10	1.638 (6)
Ce2-O11 ${ }^{\text {vi }}$	2.541 (5)	$\mathrm{Si} 1-\mathrm{O} 13^{\text {v }}$	1.667 (6)
$\mathrm{Ce} 2-\mathrm{O} 9$	2.601 (5)	$\mathrm{Si} 2-\mathrm{O} 6^{\text {ii }}$	1.581 (6)
$\mathrm{Ce} 2-\mathrm{O} 8^{\text {v }}$	2.637 (5)	$\mathrm{Si} 2-\mathrm{O} 2^{\text {ii }}$	1.619 (6)
$\mathrm{Ce} 2-\mathrm{O} 10{ }^{\text {vi }}$	2.673 (5)	Si2-O5	1.622 (6)
$\mathrm{Ce} 2-\mathrm{O} 7$	2.711 (6)	$\mathrm{Si} 2-\mathrm{O} 4^{\text {iv }}$	1.678 (6)
$\mathrm{Ce} 2-\mathrm{O} 14^{\text {vi }}$	2.857 (5)	$\mathrm{Si} 3-\mathrm{O} 9^{\text {iv }}$	1.599 (6)
$\mathrm{Ce} 3-\mathrm{O} 2^{\text {ii }}$	2.356 (6)	Si3-O7	1.636 (6)
Ce3-O1	2.373 (6)	$\mathrm{Si} 3-\mathrm{O} 4^{\text {iv }}$	1.644 (6)
Ce3-O9	2.379 (5)	Si3-O8	1.645 (6)
Ce3-O11	2.453 (5)	Si4-O12	1.602 (6)
$\mathrm{Ce} 3-\mathrm{O} 7{ }^{\text {ii }}$	2.503 (5)	Si4-O14	1.632 (6)
$\mathrm{Ce} 3-\mathrm{O}^{\text {iv }}$	2.603 (5)	Si4-O11	1.658 (6)
$\mathrm{Ce} 3-\mathrm{O} 8^{\text {ii }}$	2.666 (6)	Si4-O13	1.679 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Si} 1-\mathrm{O} 3$	112.4 (3)	$\mathrm{O} 9^{\text {iv }}-\mathrm{Si} 3-\mathrm{O} 7$	114.4 (3)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Si} 1-\mathrm{O} 10$	116.3 (3)	$\mathrm{O} 9^{\mathrm{iv}}-\mathrm{Si} 3-\mathrm{O} 4^{\text {iv }}$	111.7 (3)
$\mathrm{O} 3-\mathrm{Si} 1-\mathrm{O} 10$	105.6 (3)	$\mathrm{O} 7-\mathrm{Si} 3-\mathrm{O} 4^{\text {iv }}$	109.3 (3)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Si} 1-\mathrm{O} 13^{\mathrm{v}}$	108.9 (3)	$\mathrm{O} 9^{\text {iv }}-\mathrm{Si} 3-\mathrm{O} 8$	108.1 (3)
$\mathrm{O} 3-\mathrm{Si} 1-\mathrm{O} 13{ }^{\text {v }}$	110.2 (3)	O7-Si3-O8	105.8 (3)
O10-Si1-O13 ${ }^{\text {v }}$	102.9 (3)	$\mathrm{O} 4^{\text {iv }}-\mathrm{Si} 3-\mathrm{O} 8$	107.1 (3)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Si} 2-\mathrm{O} 2^{\text {ii }}$	113.5 (3)	O12-Si4-O14	116.6 (3)
$\mathrm{O} 6^{\text {iii }}-\mathrm{Si} 2-\mathrm{O} 5$	115.5 (3)	O12-Si4-O11	108.0 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Si} 2-\mathrm{O} 5$	106.1 (3)	O14-Si4-O11	105.7 (3)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{Si} 2-\mathrm{O} 4^{\text {iv }}$	107.8 (3)	O12-Si4-O13	111.9 (3)
$\mathrm{O} 2^{\text {iii }}-\mathrm{Si} 2-\mathrm{O} 4^{\text {iv }}$	100.7 (3)	O14-Si4-O13	107.7 (3)
O5-Si2-O4 ${ }^{\text {iv }}$	112.4 (3)	O11-Si4-O13	106.3 (3)

Symmetry codes: (i) $-x,-y+1, z-\frac{1}{2}$; (ii) $y,-x, z-\frac{1}{4}$; (iii) $x-1, y, z$; (iv) $-y+1, x, z+\frac{1}{4}$; (v) $y,-x+1, z-\frac{1}{4}$; (vi) $-y, x, z+\frac{1}{4}$; (vii) $-y+1, x, z-\frac{3}{4}$; (viii) $x+1, y, z ;(\mathrm{ix})-x+1,-y+1, z-\frac{1}{2} ;$ (x) $-x+1,-y, z-\frac{1}{2}$.

The structure was standardized by means of the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The chosen crystal was an enantiomeric twin; the Flack parameter (Flack, 1983) refined to 0.522 (19). The highest peak is $0.04 \AA$ from atom Ce 2 and the deepest hole is $1.34 \AA$ from the same atom.

Data collection: SMART (Bruker, 2003); cell refinement: SAINTPlus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL (Sheldrick, 2003); molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported in part by the MRSEC program of the National Science Foundation (grant No. DMR00-96676) at the Materials Research Center of Northwestern University

inorganic papers

References

Bruker (2003). SMART (Version 5.054) and SAINT-Plus (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Chi, L.-S., Chen, Y.-Y., Deng, S.-Q., Zhuang, H.-H. \& Huang, J.-S. (1997). Jiegou Hиахие, 16, 177-180.
Dago, A. M., Pushcharovskii, D. Y., Strelkova, E. E., Pobedimskaya, E. A. \& Belov, N. V. (1980). Dokl. Akad. Nauk SSSR, 252, 1117-1121.
Felsche, J. (1970). Naturwissenschaften Teil B, 46, 669-670.

Felsche, J. (1971). Z. Kristallogr. 133, 364-385.
Felsche, J. (1973). Struct. Bonding (Berlin), 13, 99-197.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Gelato, J. M. \& Parthé (1987). J. Appl. Crystallogr. 20, 139-143.
Müller-Bunz, H. \& Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 2549-2556.
Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Smolin, Y. I., Shepelev, Y. F. \& Butikova, I. K. (1970). Kristallografiya, 15, 256261.

