

Available online at www.sciencedirect.com

Journal of Solid State Chemistry 178 (2005) 194-199

JOURNAL OF SOLID STATE CHEMISTRY

www.elsevier.com/locate/jssc

Syntheses and structures of six compounds in the $A_2\text{Li}MS_4$ (A = K, Rb, Cs; M = V, Nb, Ta) family

Fu Qiang Huang, Bin Deng, James A. Ibers*

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA

Received 16 July 2004; received in revised form 18 October 2004; accepted 29 October 2004

Abstract

Six new compounds in the A_2LiMS_4 (A = K, Rb, Cs; M = V, Nb, Ta) family, namely K_2LiVS_4 , Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiVS₄, And Rb₂LiTaS₄, have been synthesized by the reactions of the elements in Li₂S/S/A₂S₃ (A = K, Rb, Cs) fluxes at 773 K. The A and M atoms play a role in the coordination environment of the Li atoms, leading to different crystal structures. Coordination numbers of Li atoms are five in K₂LiVS₄, four in A_2LiVS_4 (A = Rb, Cs) and Cs₂LiNbS₄, and both four and five in Rb₂LiMS₄ (M = Nb, Ta). The A_2LiVS_4 (A = Rb, Cs) structure comprises one-dimensional chains of $\frac{1}{\infty}$ [LiVS₄] tetrahedra. The Rb₂LiMS₄ (M = Nb, Ta) structure is composed of two-dimensional $\frac{2}{\infty}$ [LiMS₄] layers. The Cs₂LiNbS₄ structure contains one-dimensional $\frac{1}{\infty}$ [LiNbS₄] chains that are related to the Rb₂LiMS₄ layers. The K₂LiVS₄ structure contains a different kind of $\frac{1}{\infty}$ [LiVS₄] layer.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Alkali metal; Vanadium triad; Sulfide; Synthesis; X-ray structures

1. Introduction

Since its discovery, the reactive-flux method [1] has led to the syntheses of about 40 new A/M/M'/Q (A = Na, K, Rb, Cs, Tl; M = Cu, Ag; M' = V, Nb, Ta; Q = S, Se, Te) quaternary compounds. Examples include $K_3CuNb_2Se_{12}$ [2], $CsCu_2MTe_4$ (M = Nb, Ta) [3], A_2 AgTaS₄ (A = Tl, Rb) [4,5], NaCu₂NbS₄ [6], and Rb_2CuVS_4 [7]. In most of these compounds, the M and M' atoms are tetrahedrally coordinated by four Q atoms. The dimensionality of these structures is reduced as the ratio of alkali metal A to the transition metal (M,M') increases [8]. Take the K/Nb/Cu/Se system as an example: as one goes from Cu₃NbSe₄ [9,10] to KCu_2NbSe_4 [11] to $K_2CuNbSe_4$ [2] to K_3NbSe_4 [12] the dimensionality of the structures reduces from threedimensional to two-dimensional to one-dimensional and finally to a zero-dimensional salt. Conceptually, the series presents the progressive substitution of K for Cu.

Concomitant dimensional reduction occurs owing to the predilection of K^+ to achieve higher coordination numbers than Cu^+ .

Among ternary and quaternary metal chalcogenides containing alkali metals, those incorporating Li are the least common. Li generally adopts a lower coordination number than do its higher congeners. In sulfides, the coordination number of Li is often four (ALiS (A = K, Rb) [13,14], KLi MS_2 (M = Mn, Zn) [15], LiGaS₂ [16]); occasionally five (Li₄GeS₄ [17-19], Li₃AsS₃ [20]); and often six (LiBiS₂ [21,22], LiTiS₂ [23]). Here we investigate the substitution of Li for Cu in the K₂CuNbSe₄ structure type [2], which consists of one-dimensional ${}_{\infty}^{1}$ [CuNbSe₄^{2–}] chains of edge-sharing CuSe₄ and NbSe₄ tetrahedra. Six new compounds, namely K₂LiVS₄, Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiNbS₄, Cs₂LiNbS₄, and Rb₂LiTaS₄, have been synthesized. Li shows coordination numbers four or five in these compounds. Among these compounds three are one-dimensional and three are two-dimensional; three different space groups are represented. Only Rb₂LiVS₄ and Cs₂LiVS₄ belong to the K₂CuNbSe₄ structure type.

^{*}Corresponding author. Fax: +847 491 2976.

E-mail address: ibers@chem.northwestern.edu (J.A. Ibers).

^{0022-4596/\$ -} see front matter \odot 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2004.10.041

2. Experimental

2.1. Syntheses

The following reagents were used as obtained: K (Alfa, 98%), Rb (Aldrich, 98+%), Cs (Aldrich, 99.5%), V (Strem, 99.5%), Nb (Johnson Matthey, 99.8%), Ta (Aldrich, 99.9%), S (Alfa, 99.5%), and Li₂S (Aldrich, 98%). A_2S_3 (A = K, Rb, Cs), the reactive fluxes employed in the syntheses, were prepared by the stoichiometric reactions of the elements in liquid NH₃. All these compounds were synthesized by the reaction of 1.0 mmol of M (M = V, Nb, Ta), 1.0 mmol of S, 0.5 mmol of Li₂S, and 1.0 mmol of A_2S_3 (A = K, Rb, Cs). A reaction mixture was loaded into a fused-silica tube under an Ar atmosphere in a glove box. The tube was sealed under a 10^{-4} Torr atmosphere and then placed in a computer-controlled furnace. The sample was heated to 773 K in 8 h, kept at 773 K for 72 h, cooled at 3 K/h to 375 K, and then the furnace was turned off. The reaction mixture was washed with N,N-dimethylformamide. The products in the V reactions were composed of red needles and plates; those in the Nb and Ta reactions were pink blocks. Yields for the V reactions were greater than 90%; those for the Nb and Ta reactions were about 20%. Examination of selected crystals with an EDX-equipped Hitachi S-3500 SEM led to results consistent with the stated compositions. The compounds are extremely air-sensitive. They decompose in water and acetone.

2.2. Structure determinations

Single-crystal X-ray diffraction data were collected with the use of graphite-monochromatized $MoK\alpha$ radiation ($\lambda = 0.71073$ Å) at 153 K on a Bruker Smart-1000 CCD diffractometer [24]. The crystal-to-detector distance was 5.023 cm. Crystal decay was monitored by recollecting 50 initial frames at the end of data collection. Data were collected by a scan of 0.3° in ω in four groups of 606 frames at φ settings of 0° , 90° , 180° , and 270° . The exposure time was 5-15 s/frame. The collection of the intensity data was carried out with the program SMART [24]. Cell refinement and data reduction were carried out with the use of the program SAINT [24] and face-indexed absorption corrections were performed numerically with the use of the program XPREP [25]. Then the program SADABS [24] was employed to make incident beam and decay corrections.

The structures were solved with the direct methods program SHELXS and refined with the full-matrix least-squares program SHELXL of the SHELXTL suite of programs [25]. Each final refinement included anisotropic displacement parameters. One of the three independent K atoms in the K_2LiVS_4 structure is disordered over two sites. None of the other structures displays any disorder. Additional experimental details are shown in Table 1 and in the Supplementary material. Tables 2–5 present selected metrical data.

Table 1

Crystal data and structure refinements for K₂LiVS₄, Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiNbS₄, Cs₂LiNbS₄, and Rb₂LiTaS₄^a

Compound	K ₂ LiVS ₄	Rb ₂ LiVS ₄	Cs ₂ LiVS ₄	Rb ₂ LiNbS ₄	Cs ₂ LiNbS ₄	Rb ₂ LiTaS ₄
Formula mass	264.32	357.06	451.94	399.03	493.91	487.07
Space group	C2/c	Fddd	Fddd	РĪ	ΡĪ	ΡĪ
Z	8	8	8	4	2	4
a (Å)	10.4788(7)	5.813(1)	5.8316(5)	7.0285(4)	6.9186(8)	7.0452(5)
$b(\mathbf{A})$	8.4250(6)	13.083(2)	13.610(1)	11.3919(7)	7.2518(8)	11.3929(9)
$c(\dot{A})$	17.9897(12)	23.164(4)	24.177(2)	11.8129(7)	9.761(1)	11.8205(9)
α (°)	90	90	90	71.761(1)	96.650(2)	71.747(1)
β (°)	94.748(1)	90	90	87.877(1)	92.239(2)	87.766(1)
γ (°)	90	90	90	83.876(1)	91.279(2)	83.652(1)
$V(\text{\AA}^3)$	1582.8(2)	1761.7(5)	1918.8(3)	893.18(9)	485.9(1)	895.5(1)
$\rho_c (g/cm^3)$	2.218	2.692	3.129	2.967	3.376	3.613
$\mu ({\rm cm}^{-1})$	32.5	129.56	92.93	130.14	93.93	239.11
$T_{\rm min}/T_{\rm max}$	0.582/0.789	0.067/0.247	0.108/0.445	0.072/0.302	0.117/0.310	0.017/0.130
q	0.04	0.02	0.03	0.03	0.025	0.025
$R(F)^{\mathrm{b}}$	0.0337	0.0145	0.0219	0.0293	0.0253	0.0353
$R_{\rm w} (F_{\rm o}^2)^{\rm c}$	0.0823	0.0356	0.058	0.086	0.0629	0.1083
S^{d}	1.27	1.17	1.45	1.28	1.16	1.44

^aT = 153(2) K and $\lambda = 0.71073$ Å.

 ${}^{\mathrm{b}}R(F) = \sum ||F_{\mathrm{o}}| - |F_{\mathrm{c}}|| / |F_{\mathrm{o}}| \text{ for } F_{\mathrm{o}}^{2} > 2\sigma(F_{\mathrm{o}}^{2}).$

 ${}^{c}R_{w}(F_{o}^{2}) = \{\sum [w(F_{o}^{2} - F_{o}^{2})^{2}] / \sum wF_{o}^{4}\}^{1/2} \text{ for all data. } w^{-1} = \sigma^{2}(F_{o}^{2}) + (qP)^{2} \text{ and } P = [2F_{o}^{2} + \max(F_{o}^{2}, 0)]/3.$

^dLeast-squares goodness of fit: $S = \{\sum [w(F_o^2 - F_o^2)^2] / (n-p)\}^{1/2}$, where n = number of reflections and p = number of parameters refined.

Table 2 Selected bond lengths (Å) and angles (°) for K_2LiVS_4

Li–S2	2.496(5)	S3-V-S4	110.70(3)
Li–S4	2.497(5)	S1-V-S2	110.96(3)
Li–S2	2.536(5)	S2-Li-S4	82.7(1)
Li–S3	2.661(5)	S2–Li–S3	84.8(2)
Li–S4	2.711(5)	S4–Li–S4	88.7(3)
V–S3	2.1326(8)	S4–Li–S3	93.1(2)
V–S1	2.1414(7)	S2–Li–S4	95.2(2)
V–S2	2.1573(8)	S2–Li–S3	95.4(2)
V–S4	2.1613(8)	S4–Li–S2	112.7(2)
S2-V-S4	106.85(3)	S2–Li–S2	121.1(2)
S3-V-S2	108.42(3)	S2–Li–S4	126.1(2)
S3-V-S1	109.66(3)	S3–Li–S4	177.8(2)
S1-V-S4	110.21(3)		

Table 3 Selected bond lengths (Å) and angles (°) for Rb₂LiVS₄, and Cs₂LiVS₄

Bond/angle	Rb ₂ LiVS ₄	Cs ₂ LiVS ₄
Li–S×4	2.4030(4)	2.3988(6)
$V-S \times 4$	2.1595(4)	2.1548(6)
$S-Li-S \times 2$	93.63(2)	93.18(3)
$S-Li-S \times 2$	117.61(2)	118.09(3)
$S-Li-S \times 2$	118.24(2)	118.27(3)
$S-V-S \times 2$	108.47(2)	107.94(3)
$S-V-S \times 2$	109.61(2)	110.13(4)
$S-V-S \times 2$	110.34(2)	110.35(3)

Table 4						
Selected b	ond lengths (A	Å) and angle	s (°) for R	b ₂ LiNbS ₄ a	and Rb ₂ TaV	S_4

3. Results

3.1. Synthesis

K₂LiVS₄, Rb_2LiVS_4 , Cs₂LiVS₄, Rb₂LiNbS₄, Cs₂LiNbS₄, and Rb₂LiTaS₄ have been synthesized by the reactions of the elements in $\text{Li}_2\text{S}/\text{S}/\text{A}_2\text{S}_3$ (A = K, Rb,Cs) fluxes at 773 K. The yields of the V compounds were over 90%; those of the Nb and Ta compounds were about 20%. Attempts to prepare the other three compounds in this series, namely K₂LiNbS₄, K₂LiTaS₄, and Cs₂LiTaS₄, were unsuccessful. Failure to prepare K₂LiNbS₄ or K₂LiTaS₄ as opposed to K₂LiVS₄ may be a manifestation of the relatively small ionic radius of V^{5+} compared with those of Nb^{5+} or Ta^{5+} . But given the minimal difference in ionic radii of the latter two cations it is not clear why Cs₂LiNbS₄ could be prepared but not Cs₂LiTaS₄.

3.2. Crystal structures

There are no S–S bonds in the structures of the compounds A_2 LiMS₄ (A = K, Rb, Cs; M = V, Nb, Ta). Accordingly, the formal oxidation states of A, Li, V, and S are 1+, 1+, 5+, and 2–, respectively.

The crystal structure of K_2LiVS_4 (space group C2/c) comprises two-dimensional $^2_{\infty}[LiVS_4^{2-}]$ layers separated by K atoms. Each layer is built from edge-sharing tetrahedra NbS₄ and slightly distorted LiS₅ trigonal bipyramids (Fig. 1). The unit cell is displayed in Fig. 2.

Bond/angle	Rb ₂ LiNbS ₄	Rb ₂ LiTaS ₄	Angle	Rb ₂ LiNbS ₄	Rb ₂ LiTaS ₄
Li1-S3	2.381(8)	2.39(1)	S1-Li2-S6	80.0(3)	80.0(4)
Li1-S2	2.446(9)	2.45(1)	S6-Li2-S6	82.8(3)	82.5(4)
Li1–S7	2.481(9)	2.47(1)	S6-Li2-S1	89.5(3)	89.3(5)
Li1-S2	2.505(8)	2.50(1)	S1-Li2-S1	92.7(3)	92.9(5)
Li2–S8	2.466(9)	2.47(1)	S8-Li2-S6	97.9(3)	97.8(5)
Li2-S1	2.511(9)	2.49(2)	S8-Li2-S1	98.2(3)	98.5(5)
Li2-S6	2.528(9)	2.53(1)	S8-Li2-S6	113.2(4)	112.9(5)
Li2-S1	2.620(10)	2.63(2)	S8-Li2-S1	122.1(4)	122.6(6)
Li2-S6	3.013(10)	3.05(2)	S1-Li2-S6	123.7(4)	123.4(6)
M1-S5	2.257(1)	2.257(2)	S1-Li2-S6	163.8(4)	163.6(5)
M1-S6	2.264(1)	2.265(2)	S6-M1-S1	106.00(5)	106.05(7)
M1-S3	2.272(1)	2.269(2)	S6-M1-S3	108.51(3)	108.58(8)
M1-S1	2.276(1)	2.274(2)	S5-M1-S1	108.57(5)	108.69(8)
M2-S4	2.254(1)	2.257(2)	S5-M1-S3	110.00(5)	110.07(7)
M2-S7	2.259(1)	2.258(2)	S5-M1-S6	111.26(5)	111.22(8)
M2-S8	2.268(1)	2.264(2)	S3-M1-S1	112.45(5)	112.18(8)
M2-S2	2.288(1)	2.284(2)	S7-M2-S2	105.27(5)	105.48(7)
S7-Li1-S2	92.9(3)	93.3(4)	S4-M2-S2	108.79(5)	108.73(8)
S2-Li1-S2	101.8(3)	102.2(5)	S7-M2-S8	108.90(5)	108.81(8)
S3-Li1-S2	108.9(4)	109.1(6)	S4-M2-S7	110.60(5)	110.63(8)
S3-Li1-S7	110.5(3)	110.7(5)	S8-M2-S2	111.14(5)	111.17(8)
S3-Li1-S2	113.6(3)	113.1(5)	S4-M2-S8	111.93(5)	111.84(7)
S2-Li1-S7	125.2(4)	125.0(6)			

Table 5 Selected bond lengths (Å) and angles (°) for Cs_2LiNbS_4

Li–S1	2.426(7)	S1-Li-S4	110.5(3)
Li–S4	2.468(7)	S1-Li-S3	111.5(3)
Li–S3	2.494(7)	S1-Li-S4	114.4(3)
Li–S4	2.538(7)	S4–Li–S2	122.7(3)
Nb-S2	2.258(1)	S3–Nb–S4	105.69(4)
Nb-S3	2.262(1)	S2–Nb–S4	109.20(4)
Nb-S1	2.271(1)	S3-Nb-S1	109.38(4)
Nb-S4	2.292(1)	S2-Nb-S1	109.87(4)
S3-Li-S4	92.3(2)	S2-Nb-S3	110.43(4)
S4–Li–S4	101.7(3)	S1-Nb-S4	112.19(4)

Fig. 1. The $\frac{2}{\infty}$ [LiVS₄²⁻] layer in K₂LiVS₄.

Fig. 2. The unit cell of K₂LiVS₄ down [010].

Rb₂LiVS₄ and Cs₂LiVS₄ are isostructural and of the K₂CuNbSe₄ structure type (space group *Fddd*). The structure of Rb₂LiVS₄ is displayed in Fig. 3. It consists of one-dimensional $\frac{1}{\infty}$ [LiVS₂²⁻] chains separated by Rb atoms. Each chain is built from LiS₄ and VS₄ tetrahedra that share edges to form a $\frac{1}{\infty}$ [LiVS₂²⁻] chain along [100], as shown in Fig. 4.

Rb₂LiNbS₄ and Rb₂LiTaS₄ are isostructural, crystallizing in a new structure type (space group $P\overline{1}$) different from the structure of $A_2\text{LiVS}_4$ (A = Rb, Cs; space group *Fddd*). The unit cell of Rb₂LiNbS₄ is shown in Fig. 5. The structure is composed of two-dimensional

Fig. 3. The unit cell of Rb₂LiVS₄ down [100].

Fig. 4. The $^{1}_{\infty}$ [LiVS₄²⁻] chain in Rb₂LiVS₄.

Fig. 5. The unit cell of Rb₂LiNbS₄ down [100].

 $_{\infty}^{2}$ [LiNbS₄] layers (Fig. 6) separated by Rb atoms. Each $_{\infty}^{2}$ [LiNbS₄] layer is built from vertex- and edge-sharing NbS₄ tetrahedra, Li1S₄ tetrahedra, and distorted Li2S₅ trigonal bipyramids.

The structure of Cs₂LiNbS₄ belongs to a new structure type (space group $P\overline{1}$), as displayed in Fig. 7. The structure consists of one-dimensional ${}^{1}_{\infty}$ [LiNbS^{2–}] chains separated by Cs atoms, as shown in Fig. 8. Each chain is composed of vertex- and edge-sharing NbS₄ and LiS₄ tetrahedra, different from the chain in Cs₂LiVS₄, which is built solely from edge-sharing VS₄ and LiS₄ tetrahedra. The structure of Cs₂LiNbS₄ is related to that of Rb₂LiNbS₄. The shape of the chain in Cs₂LiNbS₄

Fig. 6. The $^{2}_{\infty}$ [LiNbS $^{2-}_{4}$] layer in Rb₂LiNbS₄.

Fig. 7. The unit cell of Cs₂LiNbS₄ down [100].

Fig. 8. The $\frac{2}{\infty}$ [LiNbS $_4^{2-}$] chain in Cs₂LiNbS₄.

(Fig. 8) is somewhat similar to that of the $^{2}_{\infty}$ [LiNbS₄] layers in Rb₂LiNbS₄ (Fig. 6).

The VS₄ tetrahedra in K₂LiVS₄, Rb₂LiVS₄, and Cs₂LiVS₄ (Tables 2 and 3) are minimally distorted. The range of V–S distances is 2.1326(8)–2.1613(8)Å and the range of S–V–S angles is 106.85(3)–110.96(3)°. These may be compared to V–S distances of 2.141(1)–2.170(1)Å and S–V–S angles of 108.54(4)–111.86(6)° in AVS₄ (A =Rb, Cs) [26]. Similarly, the MS_4 (M =Nb, Ta) tetrahedra in Rb₂LiNbS₄, Cs₂LiNbS₄, and Rb₂LiTaS₄ (Tables 4 and 5) are nearly regular with M–S distances ranging from 105.27(5) to 112.45(5)Å. These may be compared to M–S distances of 2.262(6)–2.287(6)Å and S–M–S angles of 107.71(4)–112.4(3)° in A_3MS_4 (A = Na, Rb; M = Nb, Ta) [27]. The LiS₄ tetrahedra in Rb₂LiVS₄, Cs₂LiVS₄, Rb₂LiNbS₄, Rb₂LiTaS₄, and Cs₂LiNbS₄ (Tables 3–5) are somewhat less regular than the MS_4 tetrahedra with Li–S distances ranging from 2.381(8) to 2.538(7) Å and S–Li–S angles ranging from 92.9(3) to 125.2(4)°. The Li–S distances in the LiS₄ tetrahedra in Li₃AsS₃ range from 2.39(2) to 2.58(2) Å [20] whereas they are 2.52(2) and 2.53(1) Å in LiAuS [28]. Not surprisingly, the LiS₅ trigonal bipyramids in K₂LiVS₄, Rb₂LiNbS₄, and Rb₂LiTaS₄ are more distorted: Li–S distances range from 112.7(2) to 126.1(2)°, and S_{eq}–M–S_{ax} angles range from 80.0(3) to 98.5(5)°. The S_{ax}–M–S_{ax} angles range from 163.6(5) to 177.8(2)°(Tables 2 and 4).

The A–S coordination numbers and distance ranges are: 7, 3.021(7)–3.772(6)Å (K₂LiVS₄); 8, 3.3981(6)– 3.7259(6)Å (Rb₂LiVS₄); 8, 3.5222(7)–3.8246(7)Å (Cs₂LiVS₄); 7, 3.388(1)–3.638(1)Å (Rb₂LiNbS₄); 9, 3.491(1)–4.069(1)Å (Cs₂LiNbS₄); and 7, 3.390(2)– 3.645(2)Å (Rb₂LiTaS₄). These are comparable to those in A_2 AgMS₄ (A = K, Rb, Cs; M = Nb, Ta) [7].

4. Conclusions

The substitution of Li for Cu in the K₂CuNbSe₄ structure type [2], which consists of one-dimensional $^{1}_{\infty}$ [CuNbSe₄²⁻] chains of edge-sharing CuSe₄ and NbSe₄ tetrahedra, has generally affected not only the dimensionality of the structure but also the structure type and space group. Only Rb₂LiVS₄ and Cs₂LiVS₄ belong to the K₂CuNbSe₄ structure type. In fact, among the six compounds, namely K2LiVS4, Rb2LiVS4, Cs2LiVS4, Rb_2LiNbS_4 , Cs_2LiNbS_4 , and Rb_2LiTaS_4 , three are one-dimensional and three are two-dimensional structures; there are three different space groups; there are four different structure types; there is one compound in which Li is five-coordinate; there are three in which Li is four-coordinate; and there are two in which Li is both four- and five-coordinate. It appears that the smaller the transition metal the lower the dimensionality, and the smaller the alkali metal the higher the dimensionality. One wonders whether structural information on the three other possible compounds in the series, namely K_2LiNbS_4 , K_2LiTaS_4 , and Cs_2LiTaS_4 , which we were unable to synthesize, would have simplified or further complicated these results.

5. Supplementary material available

Crystallographic data in CIF format have been deposited with FIZ Karlsruhe with the following CSD numbers: K₂LiVS₄, 414184; Rb₂LiVS₄, 414185; Cs₂LiVS₄, 414186; Rb₂LiNbS₄, 414189; Cs₂LiNbS₄, 414187; and Rb₂LiTaS₄, 414186. These data may be obtained free of charge by contacting FIZ Karlsruhe at

+49 7247 808 666 (fax) or crysdata@fiz-karlsruhe.de (E-mail).

Acknowledgments

This research was supported by the MRSEC program of the National Science Foundation (DMR00-76097) at the Materials Research Center of Northwestern University.

References

- [1] S.A. Sunshine, D. Kang, J.A. Ibers, J. Am. Chem. Soc. 109 (1987) 6202–6204.
- [2] Y.-J. Lu, J.A. Ibers, Inorg. Chem. 30 (1991) 3317-3320.
- [3] J.A. Cody, E.J. Wu, C.M. Cheung, J.A. Ibers, J. Solid State Chem. 121 (1996) 225–229.
- [4] K.O. Klepp, D. Sturmayr, Eur. J. Solid State Inorg. Chem. 34 (1997) 1133–1142.
- [5] K.O. Klepp, G. Gabl, Eur. J. Solid State Inorg. Chem. 34 (1997) 1119–1131.
- [6] C. Rumpf, C. Näther, I. Jeβ, W. Bensch, Eur. J. Solid State Inorg. Chem. 34 (1997) 1165–1177.
- [7] C. Rumpf, R. Tillinski, C. Näther, P. Dürichen, I. Jeβ, W. Bensch, Eur. J. Solid State Inorg. Chem. 34 (1997) 1187–1198.
- [8] Y.-J. Lu, J.A. Ibers, Comments Inorg. Chem. 14 (1993) 229–243.
- [9] G. Busch, B. Hilti, E. Steigmeier, Comp. Soc. Suis. Phys. 31 (1961) 379–382.
- [10] Y.-J. Lu, J.A. Ibers, J. Solid State Chem. 58-62.
- [11] Y.-J. Lu, J.A. Ibers, J. Solid State Chem. 94 (1991) 381–385.
- [12] M. Latroche, J.A. Ibers, Inorg. Chem. 29 (1990) 1503–1505.

- [13] H. Sabrowsky, A. Thimm, P. Mertens, Z. Naturforsch. B: Anorg. Chem. Org. Chem. 40 (1985) 733–735.
- [14] H. Sabrowsky, K. Hippler, R.-D. Hitzbleck, S. Sitta, A. Thimm, P. Vogt, R. Wortmann, Z. Naturforsch. B: Chem. Sci. 44 (1989) 893–895.
- [15] D. Schmitz, W. Bronger, Z. Anorg. Allg. Chem. 553 (1987) 248–260.
- [16] J. Leal-Gonzalez, S.S. Melibary, A.J. Smith, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 46 (1990) 2017–2019.
- [17] Y. Matsushita, M.G. Kanatzidis, Z. Naturforsch. B: Chem. Sci. 53 (1998) 23–30.
- [18] R. Kanno, T. Hata, Y. Kawamoto, M. Irie, Solid State Ion. 130 (2000) 97–104.
- [19] M. Murayama, R. Kanno, Y. Kawamoto, T. Kamiyama, Solid State Ion. 154–155 (2002) 789–794.
- [20] D.-Y. Seung, P. Gravereau, L. Trut, A. Levasseur, Acta Crystallogr. Sect. B: Struct. Sci. 54 (1998) 900–902.
- [21] O. Glemser, M. Filcek, Z. Anorg. Allg. Chem. 279 (1955) 321–323.
- [22] G. Gattow, J. Zemann, Z. Anorg. Allg. Chem. 279 (1955) 324–327.
- [23] J.R. Dahn, W.R. McKinnon, R.R. Haering, W.J.L. Buyers, B.M. Powell, Can. J. Phys. C 212 (1980) 207–213.
- [24] Bruker, SMART Version 5.054 Data Collection and SAINT-Plus Version 6.45a Data Processing Software for the SMART System, 2003. Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA.
- [25] G.M. Sheldrick, SHELXTL Version 6.14, 2003. Bruker Analytical X-ray Instruments, Inc., Madison, WI, USA.
- [26] M. Emirdag-Eanes, J.A. Ibers, Z. Kristallogr. New Cryst. Struct. 216 (2001) 489–490.
- [27] R. Niewa, G.V. Vajenine, F.J. DiSalvo, J. Solid State Chem. 139 (1998) 404–411.
- [28] F.Q. Huang, Y. Yang, C. Flaschenriem, J.A. Ibers, Inorg. Chem. 40 (2001) 1397–1398.