Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Co	1/2	0.70161 (10)	1/4	0.0415 (7)
Cl	0.43316 (10)	0.60460 (17)	0.14763 (13)	0.0823 (13)
N1	0.4208 (2)	0.7900 (4)	0.3173 (3)	0.036 (3)
N2	0.3132 (2)	0.8848 (4)	0.3152 (3)	0.042 (3)
N3	0.5023 (3)	1.0632 (4)	0.1401 (3)	0.045 (3)
C 1	0.3755 (3)	0.7485 (4)	0.3856 (4)	0.039 (3)
C2	0.3905 (3)	0.6643 (5)	0.4509 (4)	0.043 (4)
C3	0.3351 (3)	0.6440 (5)	0.5111 (4)	0.055 (4)
C4	0.2676 (3)	0.7022 (6)	0.5082 (4)	0.064 (5)
C5	0.2531 (3)	0.7834 (5)	0.4444 (4)	0.055 (4)
C6	0.3083 (3)	0.8057 (5)	0.3849 (4)	0.041 (4)
C7	0.3812 (3)	0.8747 (4)	0.2779 (4)	0.039 (3)
C8	0.4067 (3)	0.9453 (4)	0.2027 (4)	0.037 (3)
C9	0.3621 (3)	0.9624 (5)	0.1256 (4)	0.052 (4)
C10	0.3899 (3)	1.0302 (5)	0.0583 (4)	0.061 (4)
Cl 1	0.4579 (4)	1.0785 (5)	0.0673 (4)	0.055 (4)
C12	0.4763 (3)	0.9994 (4)	0.2069 (4)	0.039 (4)
C13	0.1790 (4)	1.0639 (5)	0.2097 (5)	0.070 (5)
C14	0.1332 (4)	1.2463 (6)	0.2501 (5)	0.089 (6)
C15	0.0777 (4)	1.1432 (6)	0.1186 (6)	0.105 (6)
N4	0.1315 (3)	1.1478 (4)	0.1919 (3)	0.053 (3)
0	0.2255 (2)	1.0618 (3)	0.2701 (3)	0.069 (3)

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{Cl}$	$2.2300(18)$	$\mathrm{Co}-\mathrm{Nl}$	$2.033(4)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}^{\mathrm{i}}$	$118.12(10)$	$\mathrm{Cl}-\mathrm{Co}-\mathrm{Nl}$	$108.08(13)$
$\mathrm{Cl}-\mathrm{Co}-\mathrm{Nl}$	$102.61(13)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 1^{j}$	$118.13(18)$

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.
The title structure was solved by the heavy-atom method; subsequent Fourier syntheses based on the heavy atom revealed the positions of all the non-H atoms. Least-squares refinement including anisotropic parameters for the non-H atoms was performed. H atoms were placed at calculated positions with $U=$ $U($ attached atom $)+0.01 \AA$.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: CAD-4-PC Software. Data reduction: NRCVAX DATRD2 (Gabe, Le Page, White \& Lee, 1987). Program(s) used to solve structure: NRCVAX SOLVER. Program(s) used to refine structure: NRCVAX LSTSQ. Molecular graphics: NRCVAX. Software used to prepare material for publication: NRCVAX TABLES.

This work was supported by the National Council of Taiwan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1062). Services for accessing these data are described at the back of the journal.

References

Bernarducci, E., Bharadwaj, P. K., Krogh-Jesperson, K., Potenza, J. A. \& Schugar, H. J. (1983). J. Am. Chem. Soc. 105, 3860-3866.
Cheng, K. L. (1989). MS thesis, National Taiwan University, Taiwan.
Enraf-Nonius (1992). CAD-4-PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands.
Gabc, E. J., Le Page, Y., White, P. S. \& Lee, F. L. (1987). Acta Cryst. A43, S-294.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. \& Schugar, H. J. (1987). J. Am. Chem. Soc. 109. 1882-1883.

Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
North, A. C. T.. Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1997). C53, 1240-1244

$\mathrm{CuW}(\mathrm{py})_{2}\left(\mathrm{H}_{\mathbf{2}} \mathrm{O}\right)_{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \mathrm{F}_{\mathbf{4}}$ and $\mathrm{CuW}(\mathrm{py})_{4} \mathrm{O}_{\mathbf{2}} \mathrm{F}_{\mathbf{4}}$

Shiv Halasyamani, Kevin R. Heier, Charlotte L. Stern and Kenneth R. Poeppelmeier*
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA. E-mail: krp@nwu.edu

(Received 21 June 1996; accepted 9 April 1997)

Abstract

Two new $\mathrm{Cu}^{\mathrm{II}} / \mathrm{W}^{\mathrm{VI}}$ oxyfluorides, catena-poly[(trifluoro-oxotungsten)- μ-fluoro-[diaquabis(pyridine- N)copper]- μ oxo] or catena-poly[(difluoro-cis-dioxotungsten)- μ -fluoro-[diaquabis(pyridine- N)copper]- μ-fluoro], $[\mathrm{CuW}$ $\left.\mathrm{O}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, (I), and catena-poly[(trifluorooxotungsten) - μ - fluoro-[tetrakis(pyridine- N)copper]- μ oxo] or catena-poly[(difluoro-cis-dioxotungsten) $-\mu$ -fluoro-[tetrakis(pyridine- N)copper]- μ-fluoro], [CuW$\left.\mathrm{O}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, (II), have been synthesized. The first complex, (I), contains one-dimensional chains of alternating $\left[\mathrm{Cu}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66+}$ cations and $\left[\mathrm{W}(\mathrm{O} / \mathrm{F})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66-}$ anions. The corner-linked octahedra form infinite and parallel chains that run along the b axis. The second compound, (II), contains onedimensional chains of alternating $\left[\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66+}$ cations and $\left[\mathrm{W}(\mathrm{O} / \mathrm{F})_{4}(\mathrm{O} / \mathrm{F})_{2 / 2}\right]^{0.66-}$ anions. The cornerlinked octahedra form infinite and non-intersecting chains that switch between [110] and [1 $\overline{1} 0$] every $c / 2$.

Comment

Two new complexes containing the $\left[\mathrm{WO}_{2} \mathrm{~F}_{4}\right]^{2-}$ anion, $\mathrm{CuW}(\mathrm{py})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}_{2} \mathrm{~F}_{4}$, (I), and $\mathrm{CuW}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{4}$, (II), have been synthesized. For (I), the $\mathrm{Cu}^{\mathrm{II}}$ cation is axially Jahn-Teller distorted with four 'short' equatorial distances $\left[\mathrm{Cu}-\mathrm{NC}_{5} \mathrm{H}_{5 \text { ave }}=2.02(1)\right.$ and $\mathrm{Cu}-\mathrm{OH}_{2}$ ave $=$ 2.00 (1) \AA] and two 'long' bonds [$\mathrm{Cu}-X 1_{\mathrm{ax}}=2.356$ (7) and $\mathrm{Cu}-X 2_{\mathrm{ax}}=2.363(7) \AA$], with $X 1$ and $X 2$ disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$. The $\mathrm{Cu}^{\mathrm{II}}$ octahedra are linked to W^{VI} through the axial ligands. Each W^{VI} atom is coordinated by two O and four F atoms [W- $(X 3-X 6)_{\text {eq,ave }}=$ 1.885 (7) \AA and $\mathrm{W}-(X 1, X 2)_{\mathrm{ax}, \text { ave }}=1.866$ (7) $\left.\AA\right]$, with $X 1-X 6$ disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$. Inter- and intra-chain hydrogen bonding (Fig. 2) occurs between $\mathrm{H}_{2} \mathrm{O}$ and O / F $\left[\mathrm{O} 7-\mathrm{H} \cdots \mathrm{X} 5\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\right)=2.61(1) \AA\right.$ (inter-
chain), $\mathrm{O} 7-\mathrm{H} \cdots \mathrm{X5}=2.69$ (1) \AA (intra-chain), O8$\mathrm{H} \cdots X 6\left(\frac{3}{2}+x, \frac{1}{2}+y, \frac{3}{2}+z\right)=2.63$ (1) \AA (inter-chain), and $\mathrm{O} 8-\mathrm{H} \cdots \mathrm{X}^{2}(x, 1+y, z)=2.65$ (1) \AA (intra-chain)]. Complex (I) is also hypercentric (Lipson \& Woolfson, 1952), with all atoms residing on general positions in the centrosymmetric space group, $P 2_{1} / n$.

(I)

(II)

The second $\mathrm{Cu}^{\mathrm{II}} / \mathrm{W}^{\mathrm{VI}}$ complex, $\mathrm{CuW}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{4}$, (II), is structurally similar to $\mathrm{CuNb}(\mathrm{py})_{4} \mathrm{OF}_{5}$ (Halasyamani, Willis, Stern, Lundquist, Wong \& Poeppelmeier, 1996). Compound (II) also contains d^{9} Jahn-Teller distorted $\mathrm{Cu}^{\mathrm{II}}$. The $\mathrm{Cu}^{\text {II }}$ atoms are equatorially coordinated to four

Fig. 1. ORTEPII (Johnson, 1976) (50\% probability ellipsoids) of (I). $X 1-X 6$ are disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$.

Fig. 2. Ball-and-stick diagram of (I) with dashed lines indicating hydrogen bonding. $X=33 \% \mathrm{O} / 67 \% \mathrm{~F} 5$ and $X^{\prime}=33 \% \mathrm{O} 6 / 67 \% \mathrm{~F} 6$.
pyridines $\left[\mathrm{Cu}-\mathrm{NC}_{5} \mathrm{H}_{5}\right.$ eq,ave $=2.04(1) \AA$] and axially to O and F atoms $\left[\mathrm{Cu}-X 1_{\mathrm{ax}}=2.364\right.$ (5) \AA]. The W^{V} cation is also octahedrally coordinated, linked to two

Fig. 3. Polyhedral and ball-and-stick packing diagram of (I). The copper octahedra are dark and the tungsten octahedra are light. In the ball-and-stick figure, the Cu^{11} atoms are filled circles and the W^{VI} atoms are dark outlined circles.

Fig. 4. ORTEPII (Johnson, 1976) (50% probability ellipsoids) of (II). The ligands around tungsten, $X 1-X 3$, are disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$.

Fig. 5. Polyhedral and ball-and-stick diagrams of (II). The copper octahedra are dark and the tungsten octahedra are light. In the ball-and-stick figure, the $\mathrm{Cu}^{\mathrm{II}}$ atoms are filled circles and the W^{VI} atoms are dark outlined circles.

O and four F atoms, $\mathrm{W}-(X 2, X 3)_{\text {eq,ave }}=1.87(1) \AA$ and $\mathrm{W}-(X 1, X 3)_{\mathrm{ax}, \text { ave }}=1.887(5) \AA$, with $X 1-X 3$ disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$.
The $\mathrm{W}-\mathrm{O} / \mathrm{F}$ bond distances are consistent with those in $\mathrm{Na}_{2} \mathrm{WO}_{2} \mathrm{~F}_{4}$ and $\mathrm{Cs}_{2} \mathrm{WO}_{2} \mathrm{~F}_{4}$ (Vlasse, Mountou, Cervera-Marzal, Chaminade \& Hagenmuller, 1982; Srivastava \& Ackerman, 1992). The remaining distances and angles are in agreement with accepted values. For the pyridine rings, the $\mathrm{C}-\mathrm{C}$ bond distances range from 1.36 (2) to 1.40 (2) \AA. The average C-C distance is 1.37 (2) A for both complexes.

Magnetic susceptibility measurements indicated (I) and (II) are paramagnetic $d^{9} \mathrm{Cu}^{11}$ systems with $\mu($ eff $)=$ 1.85 and 1.80 BM , respectively. IR measurements on (I) and (II) revealed two W-O stretches, symmetric and anti-symmetric, corresponding to cis-oxygen coordination around the tungsten (Griffith \& Wickins, 1968).

Experimental

Complex (I) was synthesized by placing $4.0 \times 10^{-2} \mathrm{~g}(5 \times$ $10^{-4} \mathrm{~mol}$) CuO (Aldrich, 99.5%) and $5.8 \times 10^{-2} \mathrm{~g}(2.5 \times$ $10^{-4} \mathrm{~mol}$) WO_{3} (Aldrich, 99.99%) in a teflon pouch (Gier \& Stucky, 1991). To the pouch, $4.3 \times 10^{-2} \mathrm{~g}\left(1.4 \times 10^{-3} \mathrm{~mol}\right)$ $(\mathrm{HF})_{x}$. pyridine (Aldrich, pyridinium polyhydrogen fluoride, $70 \% \mathrm{HF}$ by weight, $x=9.2), 8.0 \times 10^{-1} \mathrm{~g}\left(1 \times 10^{-2} \mathrm{~mol}\right)$ pyridine (Aldrich, 99%) and $6.3 \times 10^{-2} \mathrm{~g}\left(3.5 \times 10^{-3} \mathrm{~mol}\right)$ $\mathrm{H}_{2} \mathrm{O}$ were added. Compound (II) was synthesized by placing $4.0 \times 10^{-2} \mathrm{~g}\left(5 \times 10^{-4} \mathrm{~mol}\right) \mathrm{CuO}$ (Aldrich, $\left.99.5 \%\right)$ and $5.8 \times$ $10^{-2} \mathrm{~g}\left(2.5 \times 10^{-4} \mathrm{~mol}\right) \mathrm{WO}_{3}$ (Aldrich, 99.99%) in a separate teflon pouch (Gier \& Stucky, 1991). To the pouch, $1.7 \times$ $10^{-1} \mathrm{~g}\left(5.5 \times 10^{-3} \mathrm{~mol}\right)(\mathrm{HF})_{x}$. pyridine (Aldrich, pyridinium polyhydrogen fluoride, $70 \% \mathrm{HF}$ by weight, $x=9.2$), $8.0 \times$ $10^{-1} \mathrm{~g}\left(1 \times 10^{-2} \mathrm{~mol}\right)$ pyridine (Aldrich, 99%) and $6.3 \times$ $10^{-2} \mathrm{~g}\left(3.5 \times 10^{-3} \mathrm{~mol}\right) \mathrm{H}_{2} \mathrm{O}$ were added. The pouches were sealed and placed in a 2000 ml autoclave filled with 600 ml of $\mathrm{H}_{2} \mathrm{O}$. The autoclave was heated for 24 h at 423 K and cooled to room temperature over an additional 24 h . The pouches were opened in air and the products recovered by filtration. (I) and (II) crystallized separately as light-blue and dark-blue crystals, respectively. The synthesis of (II) resulted in a 50% yield of a single-phase dark-blue crystalline product, while the synthesis of (I) produced a 30% yield of the desired light-blue crystals as a mixture with (II).

Compound (I)

Crystal data
$\left[\mathrm{CuWO}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=549.62$
Monoclinic
$P 2_{1} / n$
$a=11.500(4) \AA$
$b=7.970(2) \AA$
$c=16.521(3) \AA$
$\beta=103.06$ (2) ${ }^{\circ}$
$V=1475.1(6) \AA^{3}$
$Z=4$
$D_{x}=2.475 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.43$ (5) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

CAD-4 diffractometer
ω / θ scans
Absorption correction:
analytical (de Meulenaer
\& Tompa, 1965)
$T_{\text {min }}=0.09, T_{\text {max }}=0.42$
2355 measured reflections
2237 independent reflections
1603 reflections with
$I>3 \sigma(I)$

Refinement

Refinement on F
$R=0.040$
$w R=0.047$
$S=3.41$
1603 reflections
200 parameters
H atoms not refined

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.0-11.8^{\circ}$
$\mu=9.31 \mathrm{~mm}^{-1}$
$T=153.2 \mathrm{~K}$
Plate
$0.36 \times 0.34 \times 0.10 \mathrm{~mm}$ Light blue
$R_{\text {int }}=0.02$
$\theta_{\text {max }}=22.97^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 8$
$l=-18 \rightarrow 17$
3 standard reflections every 90 reflections intensity decay: -1.4%
$\Delta \rho_{\text {max }}=1.8 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.3 \mathrm{e} \AA^{-3}$
Extinction correction: Zachariasen (1967) type 2 Gaussian isotropic
Extinction coefficient: 9.65251
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.015$

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (I)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
W	0.49702 (4)	0.10511 (6)	0.74633 (3)	0.0252 (2)
Cu	0.4988 (1)	0.6023 (2)	0.74419 (8)	0.0141 (3)
$X 1 \dagger$	0.5558 (5)	0.3198 (7)	0.7383 (4)	0.021 (2)
X2	0.4412 (6)	-0.1151 (7)	0.7507 (4)	0.022 (2)
X3	0.4363 (6)	0.0995 (8)	0.6312 (4)	0.027 (2)
X4	0.5617 (6)	0.1029 (8)	0.8608 (4)	0.026 (2)
X5	0.3544 (5)	0.1933 (8)	0.7648 (4)	0.028 (2)
X6	0.6454 (5)	0.0136 (7)	0.7307 (4)	0.023 (2)
07	0.3482 (5)	0.5287 (9)	0.7727 (4)	0.017 (2)
O8	0.6533 (5)	0.6836 (9)	0.7206 (4)	0.018 (2)
N1	0.5721 (7)	0.603 (1)	0.8668 (6)	0.020 (3)
N2	0.4238 (8)	0.598 (1)	0.6204 (6)	0.018 (3)
Cl	0.5296 (9)	0.703 (1)	0.9189 (6)	0.022 (3)
C2	0.577 (1)	0.706 (2)	1.0030 (7)	0.034 (4)
C3	0.675 (1)	0.602 (2)	1.0358 (7)	0.036 (4)
C4	0.717 (1)	0.499 (2)	0.9831 (7)	0.033 (3)
C5	0.6656 (9)	0.503 (1)	0.9006 (7)	0.021 (3)
C6	0.4582 (9)	0.705 (1)	0.5683 (7)	0.023 (3)
C7	0.4140 (10)	0.701 (2)	0.4838 (7)	0.033 (4)
C8	0.327 (1)	0.580 (2)	0.4505 (7)	0.034 (4)
C9	0.291 (1)	0.474 (1)	0.5043 (7)	0.031 (3)
C10	0.3399 (9)	0.482 (1)	0.5872 (7)	0.024 (3)

$\dagger X$ represents the $33 / 67 \%$ disordered O / F positions.
Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (I)

W—X1	$1.855(6)$	$\mathrm{Cu}-\mathrm{O} 7$	$1.984(6)$
$\mathrm{W}-X 2$	$1.876(6)$	$\mathrm{Cu}-\mathrm{O} 8$	$2.010(7)$
$\mathrm{W}-X 3$	$1.872(6)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.010(9)$
$\mathrm{W}-X 4$	$1.870(6)$	$\mathrm{Cu}-\mathrm{N} 2$	$2.033(9)$
$\mathrm{W}-X 5$	$1.872(6)$	$\mathrm{Cu}-X 1$	$2.356(7)$
$\mathrm{W}-X 6$	$1.926(6)$	$\mathrm{Cu}-X 2$	$2.363(7)$
$X 1-\mathrm{W}-X 2$	$177.4(3)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{O}$	$177.1(3)$
$X 1-\mathrm{W}-X 3$	$90.4(3)$	$\mathrm{O} 7-\mathrm{Cu}-\mathrm{N} 1$	$87.2(3)$
$X 1-\mathrm{W}-X 5$	$90.7(3)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{N} 2$	$90.2(3)$
$X 2-\mathrm{W}-X 3$	$87.9(3)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$179.0(3)$
$X 2-\mathrm{W}-X 5$	$91.4(3)$	$\mathrm{O}-\mathrm{Cu}-X 2^{\mathrm{i}}$	$89.3(4)$
$X 3-\mathrm{W}-X 4$	$177.6(3)$	$\mathrm{N} 2-\mathrm{Cu}-X 2^{\mathrm{i}}$	$90.5(5)$
$X 3-\mathrm{W}-X 5$	$92.0(3)$	$X 1-\mathrm{Cu}-X 2^{1}$	$179.2(2)$
$X 4-\mathrm{W}-X 5$	$90.1(3)$	$\mathrm{W}-X 1-\mathrm{Cu}$	$140.1(5)$
$X 5-\mathrm{W}-X 6$	$178.4(3)$	$\mathrm{W}-X 2-\mathrm{Cu}$	$140.7(5)$

Symmetry code: (i) $x, 1+y, z$.

Compound (II)

Crystal data
$\left[\mathrm{CuWO}_{2} \mathrm{~F}_{4}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=671.79$
Monoclinic
$C 2 / c$
$a=10.450(2) \AA$
$b=13.396$ (3) \AA
$c=16.067$ (7) \AA
$\beta=97.33$ (2) ${ }^{\circ}$
$V=2230.8(10) \AA^{3}$
$Z=4$
$D_{x}=2.00 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.90$ (5) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation

Data collection

CAD-4 diffractometer
ω / θ scans
Absorption correction:
analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.15, T_{\text {max }}=0.25$
2167 measured reflections
2049 independent reflections
1730 reflections with

$$
I>3 \sigma(I)
$$

Refinement

Refinement on F
$R=0.038$
$w R=0.050$
$S=4.45$
1730 reflections
149 parameters
H atoms not refined
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\max }=0.10$

$$
1830(1)
$$

Refinement on F
$R=0.038$
$=0.050$
1730 reflections
149 parameters
H atoms not refined
$(\Delta / \sigma)_{\max }=0.10$

$$
\begin{aligned}
& R_{\text {int }}=0.04 \\
& \theta_{\max }=24.97^{\circ} \\
& h=-12 \rightarrow 0 \\
& k=0 \rightarrow 15 \\
& l=-18 \rightarrow 19
\end{aligned}
$$

3 standard reflections every 90 reflections intensity decay: -0.9%

$$
\begin{aligned}
& \Delta \rho_{\max }=1.0 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-2.3 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: Zachariasen (1967) type 2 Gaussian isotropic
Extinction coefficient: 25.49971

Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\dot{A}^{2}\right)$ for (II)

$\dagger X$ represents the $33 / 67 \%$ disordered O / F positions.

Table 4. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (II)

$\mathrm{W}-X 1$	$1.891(4)$	$\mathrm{Cu}-X 1$	$2.364(5)$
$\mathrm{W}-X 2$	$1.855(5)$	$\mathrm{Cu}-\mathrm{N} 1$	$2.014(6)$
$\mathrm{W}-X 3$	$1.883(4)$	$\mathrm{Cu}-\mathrm{N} 2$	$2.071(6)$
$X 1-\mathrm{W}-X 1^{1}$	180.0	$X 1-\mathrm{Cu}-\mathrm{N} 2$	$89.8(2)$
$X 2-\mathrm{W}-X 2^{\prime}$	180.0	$\mathrm{~N} 1-\mathrm{Cu}-\mathrm{N} 2$	$87.1(2)$
$X 3-\mathrm{W}-X 3^{\prime}$	180.0	$\mathrm{~W}-X 1-\mathrm{Cu}$	$174.9(3)$
$X 1-\mathrm{Cu}-\mathrm{N} 1$	$89.8(2)$		

Symmetry code: (i) $-x, 1-y,-z$.
Based on charge balance and IR evidence, the individual $\left[\mathrm{WO}_{2} \mathrm{~F}_{4}\right]^{2-}$ groups exhibit cis-oxygen coordination; however, in the refinements, it was assumed that oxygen and fluorine are disordered around tungsten. For (I), although the site symmetry of tungsten is consistent with an ordered model, no evidence for ordering was observed. In (II), both the $\mathrm{Cu}^{\mathrm{II}}$ and W^{V1} atoms reside on inversion centers, requiring disorder of the O/F positions. Subsequently the ' X ' ligands are disordered $33 \% \mathrm{O} / 67 \% \mathrm{~F}$. The disordered O atoms (positions and $U^{i j}$'s)
were constrained to equal the respective F -atom values. The remaining non- H atoms were refined anisotropically. Pyridine H atoms were fixed at ideal positions with isotropic displacement parameters equal to 1.2 times the value of the C atom to which it is bonded. For (I), the H atoms on the water molecules, associated with O 7 and O 8 were not located. Neutral atom scattering factors were taken from Cromer \& Waber (1974).

For both compounds, data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: DIRDIF94 (Beurskens et al., 1994) for (I); DIRDIF92 (Beurskens et al., 1992) for (II). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structures: SAPI91 (Fan, 1991) for (I); SHELXS86 (Sheldrick, 1985) for (II). For both compounds, program(s) used to refine structures: TEXSAN; software used to prepare material for publication: TEXSAN.

The authors gratefully acknowledge support from the National Science Foundation, Solid State Chemistry, (Award No. DMR-9412971), and made use of the MRL Central Facilities supported by the National Science Foundation, at the Materials Research Center of Northwestern University (Award No. DMR-9120521).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK 1279). Services for accessing these data are described at the back of the journal.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., de Gelder, R., Israél, R. \& Smits, J. M. M. (1994). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers. Dordrecht.)
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fan, H.-F. (1991). SAPI91. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Gier, T. E. \& Stucky, G. D. (1991). Nature (London), 349, 508-510. Griffith, W. P. \& Wickins, T. D. (1968). J. Chem. Soc. A. pp. 40()-404. Halasyamani, P., Willis. M. J., Stern. C. L., Lundquist P. M.. Wong. G. K. \& Poeppelmeier, K. R. (1996). Inorg. Chem. 35, 1367-1371.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lipson, H. \& Woolfson, M. M. (1952). Acta Cryst. 5, 680-682.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1992). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Srivastava, A. M. \& Ackerman, J. F. (1992). J. Solid State Chem. 98, 144-150.
Vlasse, M., Mountou, J. M., Cervera-Marzal, M., Chaminade, J. P. \& Hagenmuller, P. (1982). Rev. Chim. Miner. 19, 58-64.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1997). C53, 1244-1246

Bis(barium disaccharinate triglyme) \dagger

Christian Näther, Tim Hauck and Hans Bock

Institut für Anorganische Chemie der Universität Frankfurt, Marie-Curie-Strasse 11, 60439 Frankfurt/Main, Germany.
E-mail: bock@bock.anorg.chemie.uni-frankfurt.de
(Received 1 October 1996; accepted 26 February 1997)

Abstract

The crystal structure of $\left[\mathrm{Ba}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{NO}_{3} \mathrm{~S}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{4}\right)\right]_{2}\right.$ has been determined at 150 K . The structure contains dimers of barium disaccharinate, in which each barium dication is surrounded by three saccharinate anions and one triglyme molecule. The asymmetric unit contains two crystallographically independent saccharinate anions, of which one is coordinated to the barium dication by both sulfonyl O atoms, whereas both are coordinated via their amide groups. With four additional contacts to the triglyme O atoms, the Ba^{2+} centres achieve a tenfold coordination sphere.

Comment

Detailed structure investigations of crystalline organobarium complexes are rather rare, presumably due to the difficulties associated with their preparation caused by the low reactivity of barium metal. The saccharinate anion was selected because of its excellent complexation properties. The numerous structures of saccharinate salts reported in the literature usually contain transition metal ions and only a few structures containing alkaline or alkaline earth cations are reported. Representative examples are magnesium disaccharinate heptahydrate, sodium saccharinate $2 / 3$-hydrate (Jovanovski \& Kamenar, 1982) or dipotassium sodium trisaccharinate monohydrate (Malik, Haider, Hossain \& Hursthouse, 1984).

The title compound, (I), crystallizes as a dimeric complex composed of two barium dications, four saccharinate anions and two triglyme molecules. Each barium centre is surrounded by three saccharinate anions and one triglyme molecule. Two of the saccharinate anions coordinate via their amide groups and the third via the sulfonyl O atoms. The barium dication is located within an irregular polyhedron and exhibits coordination num-

(I)

[^0]
[^0]: \dagger Alternative name: bis $\{\{$ bis $[1,2$-benzisothiazol-3(2H)-onate 1,1 -dioxide](2,5,8, 11-tetraoxadodecane) $\}$ barium $\}$.

