Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1205). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Bartlett, R. A. \& Power, P. P. (1990). J. Am. Chem. Soc. 112, 36603662.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kersting, B. \& Krebs, B. (1994). Inorg. Chem. 33, 3886-3892.
Mehrotra, R. C., Gupta, V. D. \& Sukhani, D. (1967). J. Inorg. Nucl. Chem. 29, 83-86.
Pfeiffer, J., Noltemeyer, M. \& Meller, A. (1989). Z. Anorg. Allg. Chem. 572, 145-150.
Sheldrick, G. M. (1994). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Release 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Veith, M., Detemple, A. \& Huch, V. (1990). Chem. Ber. 124, 11351141.

Ziegler, M. \& Weiss, J. (1971). Z. Naturforsch. Teil B, 26, 735.

Acta Cryst. (1996). C52, 2491-2493

$\left[\mathbf{p y H}^{+}\right]_{2}\left[\mathbf{C d N b}_{\mathbf{2}}(\mathbf{p y})_{\mathbf{4}} \mathbf{O}_{\mathbf{2}} \mathbf{F}_{\mathbf{1 0}}\right]^{\mathbf{2 -}}$

Paramasivan Halasyamani, Michael J. Willis,
Kevin R. Heier, Charlotte L. Stern and
Kenneth R. Poeppelmeier*
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA. E-mail: krp@nwu.edu
(Received 5 December 1995; accepted 6 June 1996)

Abstract

A new $\mathrm{Cd}^{\mathrm{II}} / \mathrm{Nb}^{\mathrm{V}}$ compound, bis(pyridinium) decafluoro$2 \kappa^{5} F, 3 \kappa^{5} F$-di- μ-oxo-1:2 $\kappa^{2} O ; 1: 3 \kappa^{2} O$-tetrakis(pyridine- N)cadmiumdiniobium $(2-)$, $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)_{2}\left[\mathrm{CdNb}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5}-\right.\right.$ $\left.\mathrm{N})_{4}\right]$, has been synthesized. The complex contains $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{~F}_{10} \mathrm{O}_{2}\right]^{2-}$ anions (py is pyridine) linked via the pyridinium cation through $\mathrm{N}-\mathrm{H}^{+} \ldots \mathrm{F}$ hydrogen bonding. The anion is composed of two $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$ octahedra connected by O^{2-} to a central $\left[\mathrm{Cd}(\mathrm{py})_{4} \mathrm{O}_{2 / 2}\right]$ octahedron.

Comment

The new mixed metal compound, $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4}-\right.$ $\left.\mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$, (I), is isostructural with $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CuNb}_{2}(\mathrm{py})_{4}-\right.$ $\left.\mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$ (Halasyamani et al., 1996). The title metal complex contains anionic $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$ clusters linked via the pyridinium cation through hydrogen bonding. Each cluster is composed of two $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$octahedra connected through O^{2-} to a central $\left[\mathrm{Cd}(\mathrm{py})_{4} \mathrm{O}_{2 / 2}\right]$
octahedron. The niobium cations are displaced from the center of the $\left[\mathrm{NbF}_{5} \mathrm{O}_{1 / 2}\right]^{-}$octahedra towards the bridging O atoms (Goodenough \& Longo, 1970) in an antiparallel manner.

Single crystal diffraction data revealed only three unique atoms in the asymmetric unit for pyridinium, indicating disorder. Owing to a number of possible disorder constraints, the probable $\mathrm{N}(3)-\mathrm{H}^{+} \ldots \mathrm{F}$ hydro-gen-bonding interactions were used to disorder $\mathrm{N}(3)$ and $\mathrm{C}(9)$. Only one hydrogen-bonding interaction, however, occurs for each ring. The large U_{33} value observed for the $\mathrm{F}(3)$ atom is due to the possible hydrogen-bonding interactions.

Fig. 1. ORTEPII (Johnson, 1976) plot (50% probability ellipsoids) of the polynuclear anion $\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$.

The bond lengths of (I) compare well with other compounds. For example, the $\mathrm{Nb}-\mathrm{O} / \mathrm{F}$ distances, $\mathrm{Nb}-\mathrm{F}_{\text {trans }} 2.097(6), \mathrm{Nb}-\mathrm{O} 1.747$ (7) and $\mathrm{Nb}-\mathrm{F}_{\mathrm{eq}}$ 1.935 (4) \AA, compare well to the $\mathrm{Nb}-\mathrm{O} / \mathrm{F}$ distances of $\mathrm{Nb}-\mathrm{F}_{\text {trans }} 2.095(2), \mathrm{Nb}-\mathrm{O} 1.765(2)$ and $\mathrm{Nb}-\mathrm{F}_{\mathrm{eq}}$ 1.925 (2)-1.974 (2) \AA in $\mathrm{Na}_{2}\left[\mathrm{NbF}_{5} \mathrm{O}\right]$ (Stomberg, 1983). In addition, the average $\mathrm{Cd}-\mathrm{N}$ distance of $2.35(1) \AA$ is in good agreement with the $\mathrm{Cd}-\mathrm{N}$ distance of 2.341 (5) \AA in $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{I} . \mathrm{I}_{2}\right)_{2}\right]$ (Tebbe \& Plewa, 1982).

Fig. 2. Ball-and-stick diagram of $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$, with dashed lines indicating hydrogen bonding.

Fig. 3. Packing diagram of $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$.

Experimental

The Cd analog was synthesized by placing $\mathrm{CdO}(0.128 \mathrm{~g}$, 0.001 mol , Aldrich, 99.5%) and $\mathrm{Nb}_{2} \mathrm{O}_{5}(0.133 \mathrm{~g}, 0.0005 \mathrm{~mol}$, Aldrich, 99.99%) in a teflon pouch (Gier \& Stucky, 1991). To the pouch were added (HF) $)_{x}$. pyridine ($0.51 \mathrm{~g}, 0.0015 \mathrm{~mol}$, Aldrich, pyridinium polyhydrogen fluoride, $70 \% \mathrm{HF}$ by weight), pyridine ($0.8 \mathrm{~g}, 0.01 \mathrm{~mol}$, Aldrich, 99%) and $\mathrm{H}_{2} \mathrm{O}$ $(0.036 \mathrm{~g}, 0.002 \mathrm{~mol})$. The pouch was sealed and placed in a 2000 ml autoclave filled with $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{ml})$. The autoclave was heated for 24 h at 423 K and cooled to room temperature over an additional 24 h . The pouch was opened in air and the product, subsequently determined to be $\left[\mathrm{pyH}^{+}\right]_{2}\left[\mathrm{CdNb}_{2}(\mathrm{py})_{4} \mathrm{O}_{2} \mathrm{~F}_{10}\right]^{2-}$, was recovered in about 40% yield based on CdO .

Crystal data

$\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)_{2}\left[\mathrm{CdNb}_{2} \mathrm{~F}_{10} \mathrm{O}_{2}-\right.$ $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=996.83$
Tetragonal
I4, 22
$a=11.490$ (2) \AA
$c=30.906(3) \AA$
$V=4080.2(9) \AA^{3}$
$Z=4$
$D_{x}=1.62 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.61(1) \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation pycnometry

Data collection

Enraf-Nonius CAD-4 diffractometer
ω / θ scans
Absorption correction: analytical (de Meulenaer \& Tompa, 1965)
$T_{\text {min }}=0.632, T_{\max }=$ 0.836

2043 measured reflections 1098 independent reflections

Refinement

Refinement on F
$R=0.0245$
$w R=0.0289$
$S=2.350$
982 reflections
116 parameters
H -atom parameters not refined
Weighting scheme based on measured e.s.d.'s
$(\Delta / \sigma)_{\max }=0.218$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.01-12.08^{\circ}$
$\mu=1.148 \mathrm{~mm}^{-1}$
$T=153.2 \mathrm{~K}$
Faceted
$0.386 \times 0.258 \times 0.172 \mathrm{~mm}$
Colorless

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

$$
U_{\text {iso }} \text { for } \mathrm{N}(3) \text { and } \mathrm{C}(9), U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \text { for all others. }
$$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Cd	1/2	1/2	1/2	0.01311 (9)
Nb	0.75125 (4)	x	1/2	0.01439 (8)
F(1)	0.8800 (3)	0.6446 (3)	0.4933 (1)	0.0245 (9)
F(2)	0.7785 (3)	0.7516 (3)	0.56182 (9)	0.0279 (9)
F(3)	0.8802 (3)	x	1/2	0.058 (1)
$\mathrm{O}(1)$	0.6436 (4)	x	1/2	0.0142 (8)
$\mathrm{N}(1)$	$1 / 2$	1/2	0.5755 (1)	0.022 (2)
N(2)	0.3548 (5)	$1-x$	1/2	0.019 (1)
$\mathrm{N}(3) \dagger$	0.9593 (7)	0.9576 (8)	0.4160 (2)	0.034 (1)
C(1)	0.5700 (8)	0.5685 (8)	0.5978 (2)	0.045 (2)
$\mathrm{C}(2)$	0.573 (1)	0.571 (1)	0.6425 (2)	0.052 (3)
C(3)	1/2	1/2	0.6652 (2)	0.037 (4)
C(4)	0.2428 (5)	0.6198 (5)	0.4941 (4)	0.042 (2)
C(5)	0.1552 (5)	0.7016 (6)	0.4951 (4)	0.051 (2)
C(6)	0.1839 (5)	$1-x$	1/2	0.034 (1)
C(7)	0.9201 (9)	0.9135 (9)	0.3785 (2)	0.046 (2)
C(8)	0.959 (1)	0.957 (1)	0.3399 (2)	0.062 (5)
C(9) \dagger	0.9593	0.9576	0.4160	0.034

\dagger Site occupancy $=0.5$.

982 observed reflections

$$
[I>3 \sigma(I)]
$$

$$
R_{\mathrm{int}}=0.0378
$$

$$
\theta_{\max }=24.97^{\circ}
$$

$$
h=-13 \rightarrow 0
$$

$$
k=-13 \rightarrow 0
$$

$$
l=-36 \rightarrow 0
$$

3 standard reflections monitored every 90 reflections intensity decay: 1.15%
$\Delta \rho_{\text {max }}=0.60 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1968) type 2, Gaussian isotropic
Extinction coefficient: 0.85668

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 2. Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$

$\mathrm{Cd}-\mathrm{O}(1)$	$2.333(6)$	$\mathrm{Nb}-\mathrm{F}(2)$	$1.936(3)$
$\mathrm{Cd}-\mathrm{N}(1)$	$2.335(4)$	$\mathrm{Nb}-\mathrm{F}(3)$	$2.095(4)$
$\mathrm{Cd}-\mathrm{N}(2)$	$2.359(8)$	$\mathrm{Nb}-\mathrm{O}(1)$	$1.750(6)$
$\mathrm{Nb}-\mathrm{F}(1)$	$1.932(3)$		
$\mathrm{O}(1)-\mathrm{Cd}-\mathrm{N}(1)$	90.0	$\mathrm{~F}(1)-\mathrm{Nb}-\mathrm{O}(1)$	$95.3(1)$
$\mathrm{O}(1)-\mathrm{Cd}-\mathrm{N}(2)$	$90.00(1)$	$\mathrm{F}(2)-\mathrm{Nb}-\mathrm{F}\left(2^{\mathrm{i}}\right)$	$166.7(2)$
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(2)$	90.0	$\mathrm{~F}(2)-\mathrm{Nb}-\mathrm{F}(3)$	$83.3(1)$
$\mathrm{F}(1)-\mathrm{Nb}-\mathrm{F}\left(1^{\prime}\right)$	$169.3(2)$	$\mathrm{F}(2)-\mathrm{Nb}-\mathrm{O}(1)$	$96.6(1)$
$\mathrm{F}(1)-\mathrm{Nb}-\mathrm{F}(2)$	$89.0(1)$	$\mathrm{F}(3)-\mathrm{Nb}-\mathrm{O}(1)$	180.0
$\mathrm{~F}(1)-\mathrm{Nb}-\mathrm{F}\left(2^{i}\right)$	$89.8(1)$	$\mathrm{Cd}-\mathrm{O}(1)-\mathrm{Nb}$	180.0

Symmetry code: (i) $y, x, 1-z$.
Neutral-atom scattering factors were taken from Cromer \& Waber (1974). The coordinates and isotropic U values for the disordered $\mathrm{N}(3)$ and $\mathrm{C}(9)$ sites were constrained to be equal in the refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: DIRDIF (Beurskens et al., 1992). Data reduction: TEXSAN (Molecular Structure Corporation, 1992). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN. Software used to prepare material for publication: TEXSAN.

The authors gratefully acknowledge support from the National Science Foundation, Solid State Chemistry (Award No. DMR-9412971), and made use of the MRL Central Facilities supported by the National Science Foundation, at the Materials Research Center of Northwestern University (Award No. DMR-9120521).

[^0]
References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gier, T. E. \& Stucky, G. D. (1991). Nature, 349, 508-510.
Goodenough, J. B. \& Longo, J. M. (1970). Crystallographic and Magnetic Properties of Perovskite and Perovskite-Related Compounds. In Landolt-Bornstein, Vol. 4, edited by K. H. Hellwege \& A. M. Hellwege, pp. 126-314. Berlin: Springer Verlag.
Halasyamani, P., Willis, M. J., Stern, C. L., Lundquist, P. M., Wong, G. K. \& Poeppelmeier, K. R. (1996). Inorg. Chem. 35, 1367-1371.

Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Stomberg. R. (1983). Acta Chem. Scand. Ser. A, 37, 453-459.
Tebbe. K. F. \& Plewa. M. (1982). Z. Anorg. Allg. Chem. 489, 111-125. Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1996). C52, 2493-2495

$\left[(\mathrm{CpTi})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]$

David E. Gindelberger
Department of Chemistry, University of California, Berkeley, CA 94720, USA
(Received 23 August 1994; accepted 2 April 1996)

Abstract

The X-ray crystal structure of the title cluster, hexakis $\left[1,2,3,4,5,6\left(\eta^{5}\right)\right.$-cyclopentadienyl]-di- μ_{3}-oxo1:2:3 $\kappa^{3} O ; 4: 5: 6 \kappa^{3} O$-hexatelluriumhexatitanium (18 Te Ti), $\left[\left\{\mathrm{Ti}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{6}\left(\mu_{3}-\mathrm{Te}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]$, has been determined. The metric parameters for this cluster are compared with those of the closely related oxo cluster and other relevant titanium compounds.

Comment

The cluster $\left[(\mathrm{CpTi})_{6}\left(\mu_{3}-\mathrm{Te}\right)_{6}\left(\mu_{3}-\mathrm{O}\right)_{2}\right]$, (1), where Cp is cyclopentadienyl, was obtained from the reaction of $\mathrm{Cp}_{2} \mathrm{Ti}\left(\mathrm{TeSiPh}_{3}\right)_{2}$ with PPh_{3}. Although we have little information as to how this compound is formed, it is most likely that the oxo ligands are introduced by trace amounts of water in the toluene solvent used.

(I)

An ORTEPII (Johnson, 1976) diagram of the molecular structure of (1) viewed down the $\mathrm{O}-\mathrm{O}$ vector is shown in Fig. 1. The structure of (1) is similar to the structure of $\left[\left(\mathrm{CpTi}_{6}\left(\mu_{3}-\mathrm{O}\right)_{6}\right]\right.$, (2), reported some time ago by Huffman, Stone, Krusell \& Caulton (1977). The six Ti atoms form an octahedron with each of the faces capped by a chalcogen. Each individual Ti atom is coordinated in a distorted square-pyramidal geometry. The $L-\mathrm{Ti}-L$ angles range from 75.1 (1) to $86.8(2)^{\circ}$ for cis ligands and from 121.8 (2) to $138.0(2)^{\circ}$ for trans ligands. Unlike cluster (2), the $\mathrm{Ti} \cdots \mathrm{Ti}$ distances $[3.273(2)-3.990(2) \AA$ in (1) do not suggest any degree of interaction between metal centres. The Ti-C distances (average $2.374 \AA$) are identical to values found in both (2) and related titanocene derivatives. The $\mathrm{Te} 1 \cdots \mathrm{Te} 3$ and $\mathrm{Te} 2 \cdots \mathrm{Te} 3$ distances [3.442 (1) and 4.048 (1) \AA, respectively] lie outside the range of bond lengths found for $\mathrm{Te}-\mathrm{Te}$ covalent bonds (Du

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1219). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

